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Introduction

The central principles of decision 
analysis is that we can represent 
uncertainty of any kind through the 
appropriate use of probability.

Be able to create and analyze a model 
that represents the uncertainty faced in 
a decision.
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Introduction

The nature of the model created naturally 
depends on the nature of the uncertainty 
faced and the analysis required depends on 
the exigencies of the decision situation.

The term chance event to refer to something 
about which a decision maker is uncertain.  A 
chance event has more than one possible 
outcome.  When we talk about probabilities, 
we are concerned with the chances 
associated with the different possible 
outcomes.
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Introduction
Objectives of Studying Probability:

1. To become reasonably comfortable with 
probability concepts,

2. To become comfortable in the use of 
probability to model simple uncertain 
situations,

3. To be able to interpret probability 
statements in terms of the uncertainty 
that they represent, and 

4. To be able to manipulate and analyze the 
models you create.
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Introduction

Thus, the fundamental mathematical 
tools of probability theory can be used 
to
– identify all possible outcomes for a specific 

problem, and
– define events in the context of all these 

possibilities

The basic mathematical tools of 
probability theory is the set theory.
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Introduction

Sets constitute a fundamental concept in 
probabilistic analysis of engineering systems.

Establishment of a proper model and 
obtaining realistic results require the definition 
of the underlying sets.

The objective herein is to provide the needed 
set foundation for probabilistic analysis
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Sets
– Definition:

“A set can be defined as a collection of 
objects, called elements or components”

– Capital letters are usually used to denote 
sets.

e.g., A, B, X, and Y

– Small letters are used to denote their 
elements

e.g., a, b, x, and y

Sample Spaces, Sets, and Events
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Sample Spaces, Sets, and Events

Sets

a ∈C means a belongs to C

a ∉C means a does not belong to C

a, b ∈ C means both a and b belong to C
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Sample Spaces, Sets, and Events

Examples: Sets
A = {2, 4, 6, 8, 10}

B = {b:b>0}; where ‘:” means “such that”

C = {Maryland, Virginia, Washington}

D = {P, M, 2, 7, U, E}

F = {1, 3, 5, 7, 9, 11,…}; the set of odd numbers
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Sample Spaces, Sets, and Events

– In set A, 2 belongs to A, but 14 does not 
belong to A

• Mathematically
2 ∈ A means 2 belongs to A

14 ∉ A means 14 does not belong to A

– Sets can be classified as finite and infinite
sets

A, C, and D are finite sets

B and F are infinite sets
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Sample Spaces, Sets, and Events

– The element of a set can be either discrete
or continuous.

Elements in sets A, C, D, and F are discrete

Elements in set B are continuous

– A set without any element is called a null 
(or empty) set and is denoted as φ.
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Sample Spaces, Sets, and Events

Subsets
A ⊂ B means A is a subset of B

A = B means A and B have exactly the 

same elements

A ⊄ B means A is not a subset of B

A ≠ B means A and B do not have exactly 

the same elements

NOTE: the null set φis considered a subset of every set
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Sample Spaces, Sets, and Events

Examples: Subsets
A1 = {2, 4} is a subset of A = {2, 4, 6, 8, 10}

B1 = {b:7<b≤200} is a subset of B = {b:b>0}

F = {1,2,3,4,5} is a subset of F = {1,2,3,4,5}
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Sample Spaces, Sets, and Events

Sample Spaces and Events
– The set of all possible outcomes of random 

experiment (system) is called a sample space and 
is presented by the symbol S.

– A subset of the sample space S is called  an
event.

– An event without sample points is an empty set, 
and is called the impossible event φ.

– A set that contains all the sample points is called 
the certain event (or sample space) S.
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Sample Spaces, Sets, and Events

Examples: Sample Spaces
A = {number of cars waiting (queuing) for a left 

turn at specified traffic light}

B = {number of units produced by an assembly 

line}

C = {the strength of concrete delivered at a 

construction site}

D = {the deformation of a structure under 

extreme load conditions}
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Sample Spaces, Sets, and Events

Examples: Events
A1 = {number of cars waiting (queuing) for a left 

turn at specified traffic light between 3:30 

p.m. and 6:30 p.m. on a working day}

D1 = {failure of structure}
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Sample Spaces, Sets, and Events

Example: Sample Spaces and Events
Roll of a Pair of Dice:

Consider an experiment of rolling two dice.  A 
convenient sample space that will enable us to 
answer many questions about events in the 
following figure.
What is the event (subset of sample space S) that 
correspond to each of the following outcomes?
(a) A sum of 7 turns up (b) A sum of 11 turns up
(c) A sum less than 4 turns up
(d) A sum of 12 turns up

CHAPTER 7b.  PROBABILITY BASICS Slide No. 17
ENCE 627 ©Assakkaf

Sample Spaces, Sets, and Events

Roll of a Pair of Dice
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Sample Spaces, Sets, and Events

Example: (cont’d)
– Roll of a Pair of Dice

(a) E1 = {(6,1), (5,2), (4,3), (3,4), (2,5), (1,6)}

(b) E2 = {(6,5), (5,6)}

(c) E3 = {(1,1), (2,1), (1,2)}

(d) E4 = {(6,6)}
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Venn Diagrams
Events and sets can be presented using 
spaces that are bounded by closed 
shapes, such as circles.

These shapes are called Venn-Euler (or 
simply Venn) diagrams.

Belonging, non-belonging, and overlaps 
between events and sets can be 
presented by these diagrams. 
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Venn Diagrams

Events in Venn Diagram

Sample Space S

A

B
C A

B

S
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Venn Diagrams

– A sample space S, and 
events A, B, and C are 
shown in the figure.

– The event C is contained 
in B (i.e., C ⊂ B)

– A is not equal to B (i.e., A
≠ B).

– The events A and B have 
an overlap in the sample 
space S.

Sample Space S

A

B
C



12

CHAPTER 7b.  PROBABILITY BASICS Slide No. 22
ENCE 627 ©Assakkaf

Basic Operations

The union of A and B
which is denoted as 
A ∪ B is the set of all 
elements that belong to 
A or B or both.
Two or more events are 
called collectively 
exhaustive events if 
the union of these 
events results in the 
sample space.

A
B

S
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Basic Operations

The intersection of A
and B, which is denoted 
as A ∩ B, is the set of 
all elements that belong 
to both A and B.
Events are termed 
mutually exclusive if 
the occurrence of one 
event precludes the 
occurrence of the other 
events

A
B

S

A ∩ B
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Basic Operations

The difference of 
events A and B, which 
is designated A – B, is 
the set of all elements 
that belong to A but not 
to B.

A
B

S
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Basic Operations

If A ∩ B = ∅, then the 
sets A and B are said to 
be disjoint (mutually 
exclusive).

If B ⊂ A, then A – B is 
called the complement 
of B relative to A and is 
denoted by      .

A
B

S

AB

A B
S



14

CHAPTER 7b.  PROBABILITY BASICS Slide No. 26
ENCE 627 ©Assakkaf

Basic Operations

The event that contains 
all of the elements that 
do not belong to an 
event A is called the 
complement of A, and 
is denoted by A

A

S

A
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Basic Operations

Example: Operations on Sets and Events
– The following are example sets:

A = {2, 4, 6, 8, 10}

B = {1, 2, 3, 4, 5, 6, 7, 8, 9, 10}

C = {1, 3, 7, 9, 11, …}; the set of odd numbers

F1 = {failure of a structure due to earthquake}

F2 = {failure of a structure due to strong winds}

F3 = {failure of a structure due to an extreme 

overload }
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Basic Operations

Example: Operations on Sets and Events
– The following operations can be executed for 

the previous example sets:
A ∪ B = {1, 2, 3, 4, 5, 6, 7, 8, 9,10}
A ∩ B = {2, 4, 6, 8,10}

= {2, 4, 8, 10, 12, …}; the set of even numbers
F1 ∪ F2 = {failure of the structure due to an 

earthquake or strong wind}
={non-failure of the structure due to an 

extreme overload}
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Venn Diagram and Basic Operations

Example: Venn Diagram and Basic 
Operations
– A city has two daily newspapers, the 

Wildcat and the Journal.  The following 
information was obtained from a survey of 
100 residents of the city.  35 people 
subscribe to Wildcat, 60 subscribe to the 
Journal, 20 subscribe to both papers
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Venn Diagram and Basic Operations

1. How many people in the survey subscribe 
to the Wildcat but not to the journal?

2. How many subscribe to the Journal but 
not to the Wildcat?

3. How many do not subscribe to either 
paper?

4. Organize this information in a table.
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Venn Diagram and Basic Operations

Solution
– Let S be the group of people surveyed.

– Let W be the set of people who subscribe 
to the Wildcat, and

– Let J be the set of people who subscribe to 
the Journal
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Venn Diagram and Basic Operations

Solution (cont’d)
– Hence,

• the set of people in the survey group S who 
do not subscribe to the Wildcat.

• the set of people who do not subscribe to 
Journal.

W

J
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Venn Diagram and Basic Operations

W ∩ J = Set of people who 
subscribe to both paper

= Set of people who   
subscribe to Wildcat but 
not to the Journal

= Set of people who 
subscribe to the Journal 
but not the Wildcat

= Set of people who do not    
subscribe to either paper

J
S

W

JW ∩ JW ∩ JW ∩

JW ∩

JW ∩

JW ∩

JW ∩
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Venn Diagram and Basic Operations

– Solution (cont’d)
The given information can expressed in the 
terms of set notation as

n(S) =100, n(W) = 35, n(J) = 60

n(W ∩ J) = 20
This information with a Venn diagram can be 
used to answer the questions.  To begin, we 
place 20 in W ∩ J in the diagram
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Venn Diagram and Basic Operations

J
S

W

2015
40

25
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Venn Diagram and Basic Operations

Solution (cont’d)
1. The number of people subscribe to the 

Wildcat but not to the Journal is

2. The number of people who subscribe to 
Journal but not to the Wildcat is

152035)( =−=∩ JWn

402060)( =−=∩ JWn
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Venn Diagram and Basic Operations

Solution (cont’d)
3. The number of people who do not 

subscribe to either paper is

4.  The following table contains the same 
information as in the Venn diagram 
figure, but organized in a different format:

25402015100)( =−−−=∩ JWn
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Venn Diagram and Basic Operations

Solution (cont’d)
Journal

Subscriber, J Subscriber, J Totals
Subscriber, W 20 15 35

Nonsubscriber, W 40 25 65Wildcat
Totals 60 40 100

J
S

W

2015
40

25
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Additional Operational Rules

Combinations of Laws

De Morgan’s Law

Distributive Laws
Associative Laws
Commutative Laws
Complement Laws

A∪A = A, A∩A = AIdem potent Laws
A∪∅ = A, A∩∅ = ∅, A∪S = S, A∩S = AIdentity Laws

OperationsRule Type

SSAAAASAA =∅∅==∅=∩=∪  , , , ,
ABBAABBA ∩=∩∪=∪ ,

( ) ( ) ( ) ( )CBACBACBACBA ∩∩=∩∩∪∪=∪∪  ,
( ) ( ) ( )CBCACBA ∩∪∩=∩∪
( ) ( ) ( )CBCACBA ∪∩∪=∪∩

( ) ( )
nn
EEEEEEBABA ∩∩=∪∪∩=∪ ...... ,

2121

( ) ( )
nn
EEEEEEBABA ∪∪∪=∩∩∩∪=∩ ...... ,

2121

( )( ) ( ) ( ) ( )CABACBACBA ∩∪∩=∩∩=∩∪
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Definition of Probability

Relative Frequency
– In an experiment (or system) that can be 

repeated N times with n occurrences of an 
event of interest, the relative frequency of 
occurrence can be considered as the 
probability of occurrence.

– In this case, the probability of occurrence is

( )
N
nxX ==

0
P
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Definition of Probability

Example: Product Reliability
– A factory produces a product.  A sample of 

size N was taken from a production line.  
The number of non-defective products was 
determined to be n.

N
n

=defective)-(nony Probabilit
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A Little Probability Theory

Probabilities must satisfy the following 
three main requirements:

1. Probabilities Must Lie Between 0 and 1.

2. Probabilities Must Add Up.

3. Total Probability Must Equal 1.
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Probability Requirements — Rule 1

1 - Probabilities Must Lie Between 0 and 1
Every probability (p) must be positive, and between 0 
and 1, inclusive ( 0 < p < 1 ).  This is a sensible 
requirement.  In informal terms it simply means nothing 
can have more than 100% chance of occurring or less 
than a 0% chance.

Rule 1: Every probability must be between 0 and 1 
(inclusive).

1 ~ 100% chance of occurring
.
.
.
0 ~ 0% chance of occurring

Rule 1: Every probability must be between 0 and 1 
(inclusive).

1 ~ 100% chance of occurring
.
.
.
0 ~ 0% chance of occurring
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Probability Requirements — Rule 2

2 - Probabilities Must Add Up
Suppose several outcomes are mutually exclusive (only one 
can happen, not both).  The probability that one or the other 
occurs is then the sum of the individual probabilities. 

Rule 2: Suppose two outcomes A1, A2 are 
mutually exclusive.  Then the
probability of either A1 or A2 occurring 
is:

P (A1 or A2) = P (A1) + P (A2)

Rule 2: Suppose two outcomes A1, A2 are 
mutually exclusive.  Then the
probability of either A1 or A2 occurring 
is:

P (A1 or A2) = P (A1) + P (A2)
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Probability Requirements-Rule 2(cont’d)

Example 1: Stock Market
– Consider the stock market.  Suppose there 

is a 30% chance that the market will go up 
and a 45% chance that it will stay the same 
(as measured by the Dow Jones average). 

– It cannot do both at once, and so the 
probability that it will either go up or stay 
the same must be 75%.
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Example 2: Coin flipping, mutually 
exclusive, collectively exhaustive
A1 = “heads”  P(A1)=0.5 for a fair coin

A2 = “tails”     P(A2)=0.5 for a fair coin

Then,

P (A1 or A2) = 1 i.e P(A1 ∪ A2) = 1

P (A1) + P (A2)= 0.5 + 0.5, so

P (A1 or A2) = P (A1) + P (A2) = 1.0

Probability Requirements-Rule 2(cont’d)

union

CHAPTER 7b.  PROBABILITY BASICS Slide No. 47
ENCE 627 ©Assakkaf

Probability Requirements —Rule 3
3 - Total Probability Must Equal 1

Suppose a set of outcomes is mutually exclusive and collectively 
exhaustive.   This means that one (and only one) of the possible 
outcomes must occur.  The probabilities for this set must sum 
to 1.  
Informally, if we have a set of outcomes such that one of them 
has to occur, then there is a 100% chance that one of them will 
indeed come to pass.

Rule 3: Total Probability Must Equal 1

If a set of outcome A1, A2, …, An is mutually 
exclusive and collectively exhaustive, then
P(A1 or A2 or … or An)

= P(A1) + P(A2) + … + P(An)  =1
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Useful Formulas

Formula I
– If A1, A2,…….An are mutually exclusive

events on the sample space S, then
( ) )(P...)(P)(P...P

2121 nn
AAAAAA +++=∪∪∪

A1 A2 An…...

S
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Useful Formulas

Formula II
If events A and B are not mutually
exclusive events on the sample space S, 
then

( ) ( ) ( ) ( )BABABA ∩−+=∪ PPPP

A B

S
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Useful Formulas

Computational Rules
Additional computational rules can be developed 
based on the previous axioms.  The following are 
examples rules:
( ) ( ) ( ) ( ) ( )

( ) ( )CBCA
BACBACBA

∩−∩−
∩−++=∪∪

PP                          
PPPPP

( ) ( )
( ) ( )BABA

A
PP then , If

P1AP
≤⊆

−=

CHAPTER 7b.  PROBABILITY BASICS Slide No. 51
ENCE 627 ©Assakkaf

Useful Formulas

Example: Union and Intersection
Suppose a pair of dice are rolled:

a. What is the probability that a sum of 7 or 
11 turns up?

b. What is the probability that both dice turn 
up the same or that a sum less than 5 
turns up?
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Useful Formulas

Example (cont’d): Part a Solution

Event A Event B
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Useful Formulas

Example (cont’d): Part a solution
Let 

A = event that sum of 7 turns up

B = event that sum of 11turns up

Then

A ∪ B = the event that sum of 7 or 11 turns 

up
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Useful Formulas

Example(cont’d): Part a solution
A = {(1,6), (2,5), (3,4), (4,3), (5,2), (6,1)}
B = {(5,6), (6,5)}

Since events A and B are mutually exclusive, 
then the event that a sum of 7 or 11 turns 
up is

9
2

36
2

36
6)(P)(P)(P =+=+=∪ BABA
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Useful Formulas

Example (cont’d): Part b solution

Event D

Event C
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Useful Formulas

Example (cont’d): Part b solution
Let 

C = event that the both dice turn up 
the same

D = event that the sum is less than 5
Then

C ∪ D = the event that both dice turn up 
the same or the sum is less than 5
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Useful Formulas

Example (cont’d): Part b solution
C = {(1,1), (2,2), (3,3), (4,4), (5,5), (6,6)}
D = {(1,1), (1,2), (1,3), (2,1), (2,2), (3,1)}

Since C ∩ D = {(1,1), (2,2)}, C and D are not 
mutually exclusive.  And the event that 
both dice turn up the same or the sum is 
less than 5 is

18
5

36
2

36
6

36
6)(P)(P)(P)(P =−+=∩−+=∪ BCDCDC
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Conditional Probability

The probabilities previously discussed 
are based on and relate to sample 
space S.  However, it is common in 
many engineering problems to have 
interest of occurrence of events that are 
conditioned on occurrence of a subset 
of the sample space.  This is introduces 
the concept of conditional probability.
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Conditional Probability

The probability of an event may change 
if we are told of the occurrence of 
another event.
– Example 1:

• If an adult is selected at random from all adults 
in the United States, the probability of that 
person having lung cancer would not be too 
high.
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Conditional Probability

– Example 1 (cont’d):
• However, if we are told that the person is also a 

heavy smoker, then we would certainly want to 
revise the probability upward.  In other words, 
the probability would be much higher because 
smoking (specially heavy) causes cancer.

• In general, the probability of the occurrence of 
an event A, given the occurrence of event B, is 
called conditional probability and is denoted by 
P(A|B).
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Conditional Probability

– Example 1 (cont’d):
• In this example, events A and B would be

A = Adult has lung cancer
B = Adult is a heavy smoker

• And P(A|B) would represent the probability of 
an adult having lung cancer, given that he or 
she is a heavy smoker.
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Conditional Probability

Example 2
Tracking Dow Jones stock 

prices

A = your stock’s price (IBM) up

B = Dow Jones up
4 Cases: Dow Jones price IBM price

1     Up Up 

2 Up Down

3 Down Up

4 Down Down

A
IBM Up

B
Dow Up
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Conditional Probability

Dow
Jones
Up (B)

Stock
Price Up (A)

Stock
Price Up and 
Dow Jones Up

(joint outcome or
intersection)

P(B)
B) andP(A B)AP( =

Neither the Dow Jones index nor 
the stock price goes up

Portions 
representing 
possibility of

DJ going up and 
SP going down or

vise-a-versa.
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Conditional Probability

Conditional Probability
For events A and B in an arbitrary sample 
space S, the conditional probability of A
given B can be computed as follows:

( )
( ) ( ) 0P            

P
P)|(P ≠

∩
= B

B
BABA
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Conditional Probability

Example 3:
The objective herein is to try to formulate a 
precise definition of P(A|B) through a 
simple example.

What is the probability of rolling a prime 
numbers (2, 3, or 5) in a single roll of a 
fair die?
Let S = {1, 2, 3, 4, 5, 6}
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Conditional Probability

Example 3 (cont’d):
Then the event of rolling a prime number is 

A = {2, 3, 5}

•1

•5
•3

•2

•4
•6A

( ) ( )
( ) 2

1
6
3P ===

Sn
AnA
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Conditional Probability

Example 3 (cont’d):
Now suppose we are asked “In a single roll of a 
fair die, what is the probability that a prime 
number has turned up if we are given the 
additional information that an odd number has 
turned up?”
The additional information that another event has 
occurred, namely,

B = {odd number turns up}

put the problem in a new light.
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Conditional Probability

Example: (cont’d):
– We are now interested only in the part of 

event A (rolling a prime number) that is in 
event B (rolling an odd number).

– Event B, since we know it has occurred, 
becomes the new sample space.

– The following Venn diagrams illustrate the 
various relationships:
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Conditional Probability

Example: (cont’d):
Thus, the probability of A given B is the number 
of A elements in B divided by the total number 
of elements in B

•1

•5
•3

•2

•4
•6A

•1

•5
•3

B ( ) ( )
( ) 3

2|P =
∩

=
Bn
BAnBA
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Conditional Probability

Example: (cont’d):
Dividing the numerator and denominator of 
n(A∩B)/n(B) by n(S), the number of elements in 
the original sample space, the expression for 
the conditional probability can be verified as 
follows:|

( )
( )

( )
( )
( )
( )

( )
( )B
BA
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Conditional Probability

Example: (cont’d):
Using the above expression to compute P(A|B) 
for this example, the same result (as it should 
be) is obtained as follows:

( )
( ) 3

2

6
3
6
2

P
P)|(P ==

∩
=

B
BABA

•1

•5
•3

•2

•4
•6A

•1

•5
•3

•2

•4
•6A

B



37

CHAPTER 7b.  PROBABILITY BASICS Slide No. 72
ENCE 627 ©Assakkaf

Conditional Probability

Properties of Conditional Probability
1. The complement of an event: 

2. The multiplication rule for two events A and B:

( ) ( )BABA |P1|P −=

( ) ( ) ( ) ( )
( ) ( ) ( ) ( ) 0P if        P A|PP

0P if        P B|PP
≠=∩
≠=∩

AABBA
BBABA
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Conditional Probability

Properties of Conditional Probability
3. The multiplications rule for three events A, B, 

and C: 

( ) ( )( ) ( ) ( )
( )( ) ( )

( ) ( ) 0P and  0P if          
      

P |P                       
P |P CB|PP

≠∩≠

∩=
∩=∩∩

CBC

CCBA
CCBACBA
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Conditional Probability

Properties of Conditional Probability
4. For mutually independent events A and B:

5. For statistically independent events A and B:

( )
( ) 0|P

0|P
=
=

AB
BA

( ) ( )
( ) ( )
( ) ( ) ( )BABA

BAB
ABA

P PP
P|P
P|P
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Theorem of Total Probability
If structural damage (D) to a building 
can only be caused by three events: fire
(F), strong wind (W), or earthquake (E), 
then D will depend on whether F, W, or 
E has occurred, and the likelihood of 
occurrence of F, W, and E.

If we assume further that F, W, and E
are collectively exhaustive and mutually 
exclusive events, then
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Theorem of Total Probability

the probability of damage to the building can 
be computed as

Each term in the right-hand side of the above 
equation calculates the probability of damage 
given that fire, wind, or earthquake has 
occurred.  The concept of above equation is 
called the theorem of total probability.

( ) ( ) ( ) ( ) ( ) ( ) ( )EEDWWDFFDD P |PP|PP |PP ++=
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Theorem of Total Probability

If A1, A2, A3,.. An,represents a partition of a 
sample space S, and E ⊂ S represents an 
arbitrary event, the theorem states that
( ) ( ) ( ) ( ) ( ) ( ) ( )nn AEAAEAAEAE |P P...|P P|P PP 2211 +++=

A1
A2 A3 A4

A5

E
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Theorem of Total Probability

from which we can derive:

B)P(B)P(AA)P(A)P(B =

P(A)
B)P(B)P(A

A)P(B =

Now expanding P(A) with the formula for total probability, we 
obtain:

)B)P(BP(A)P(B)BP(A
)P(B)BP(A

)AP(B
+

=

Note: Bayes’ theorem is extremely useful in decision analysis, 
especially when using information.
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Theorem of Total Probability

– Bayes’ Theorem
It is useful in computing the reverse probability 
of the type P(Ai | E), for I = 1, 2, …,n.  The 
reverse probability can be computed as

( ) ( ) ( )
( ) ( ) ( ) ( ) ( ) ( )

( ) ( )
( )E

AEA
AEAAEAAEA

AEAEA ii

nn

ii
i P

|P P
|P P...|P P|P P

|P P|P
2211

=
+++

=

A1
A2 A3 A4

A5E
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Theorem of Total Probability

Example: Defective Products in 
Production Lines

Consider a factory with three production 
lines, L1, L2, and L3.  Products are either 
defective (D) or non-defective (ND).  The 
following probabilities are given:

( )
( )
( ) 2.0|P

1.0|P
1.0|P

3

2

1

=
=
=

LD
LD
LD
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Theorem of Total Probability

Example (cont’d): Defective Products in 
Production Lines

Assuming 20, 30, and 50% of the 
components are manufactures by lines 1, 
2, and 3, the probability of defective 
components is

( ) ( ) ( ) ( ) ( ) ( ) ( )
15.05.02.03.01.02.01.0        

|P P|P P|P PP 332211

=×+×+×=
++= LDLLDLLDLD
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Uncertain Quantities
Many uncertain events have quantitative outcomes.
If an event is not quantitative in the first place, we might define 
a variable that has a quantitative outcome based on the 
original event.
The set of probabilities associated with all possible outcomes 
of an uncertain quantity is called its probability distribution.
The probabilities in a probability distribution must add to 1 
because the events - numerical outcomes - are mutually 
exclusive.

Note:
1. Uncertain quantities (often called random variables) and their 

probability distributions play a central role in decision 
analysis.

2. It is helpful to distinguish between discrete and continuous 
uncertain quantities.
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Random Variables

A random variable is defined as a 
function that assigns a real value to 
every outcome (event) for an 
engineering system.

Random variables are commonly 
classified into two types:  discrete
and continuous random variables.
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Example: Random Variables

Discrete Random Variables
♦ The outcome of a roll of a die may only take on the integer 

values from 1 to 6.

♦ The number of floods per year at a point on a river can only 
take on integer values, so it is also a discrete random 
variable.

♦ Continuous Random Variables
♦ The average of all scores on a test having a maximum 

possible score of 100 may take on any value including non-
integers, between 0 and 100.

♦ The yield strength of steel can take any non-negative 
value.
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Discrete Probability Distributions

The discrete probability distribution case is 
characterized by an uncertain quantity that can 
assume a finite or countable number of possible 
values.  

When we specify a probability distribution for a 
discrete uncertain quantity, we can express the 
distribution in several ways.  

The two approaches that are particularly useful are:

– The probability mass function, and

– A cumulative distribution function (CDF).
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Discrete Probability Distributions

Probability Mass Function
– The set of ordered pairs (xi, P(xi)) is a 

probability mass function or probability 
distribution of the discrete random variable 
X, if for each possible outcome xi:

( ) ( )
( )

( )∑
=

=

≤≤
==

N

i
iX

iX

iiX

xP

xP
xXxP

1
1
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Discrete Probability Distributions

Cumulative Mass Function
– The cumulative mass function FX(xi)of a 

discrete random variable X with probability 
mass function PX(xi) is given by

( ) ( ) ( )∑
=

=≤=
i

j
jXiiX xPxXxF

1
P
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Discrete Probability Distributions
Example
– Suppose that you think that no cookie in a 

batch of oatmeal cookies could have more 
than five raisons.  A possible probability 
mass function would be

P (Y = 0 raisins) = 0.02 P (Y = 3 raisins) = 0.40
P (Y = 1 raisins) = 0.05 P (Y = 4 raisins) = 0.22
P( Y = 2 raisins) = 0.20 P (Y = 5 raisins) = 0.11

( ) ( )
( )

( )∑
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Discrete Probability Distributions
Example (cont’d)

0

0.1

0.2

0.3

0.4

1 2 3 4 5 y

P(Y = y)

0.02
0.05

Probability Mass Function
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Discrete Probability Distributions
Example (cont’d)
– A cumulative distribution gives the 

probability that an uncertain quantity is less 
than or equal to a specific value P(X < x).  
For this example the CMF is

P(Y < 0 raisins) = 0.02 P(Y < 3 raisins) = 0.67
P(Y < 1 raisins) = 0.07 P(Y < 4 raisins) = 0.89
P(Y < 2 raisins) = 0.27 P(Y < 5 raisins) = 1.00

( ) ( ) ( )∑
=

=≤=
i

j
jXiiX xPxXxF

1
P
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Discrete Probability Distributions
Example (cont’d)

Cumulative Mass Function
P(Y< y)

0.00

0.25

0.50

0.75

1.00

1 2 3 4 5 y0
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Discrete Probability Distributions

Measures of Probability
– Expected Value (Mean or Average)

– Variance

– Standard Deviation, σ

– Coefficient of variation (COV)

– Skewness
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Discrete Probability Distributions
Definition:

The variation of uncertain quantity X is denoted by Var(X) or        
(Greek sigma) and is calculated mathematically by:

x
2σ

)(P)](E[)(P)](E[)(Var 2
2

21
2

1 xXXxxXXxX =−+=−=

)(P)](E[... 2
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Discrete Probability Distributions
Definition:

The standard deviation of X, denoted by       is just the square 
root of the variance.  

Because the variance is the expected value of the squared 
differences, the standard deviation can be thought of as a “best 
guess” as to how far the outcome of the X might lie from E(X).

Note:
1. A large standard deviation and variance means that the 

probability distribution is quite spread out; a large difference
between the outcome and the expected value is anticipated.  For 
this reason, the variance and the standard deviation of a 
probability distribution are used as measures of variability or 
Risk.

2. A large variance or standard deviation would indicate a 
situation in which the outcomes are highly variance.

xσ
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Discrete Probability Distributions

Measures of Discrete Random Variables
• If X is a discrete random variable with PMF 

PX(x), the following expressions can be used to 
compute the mean, variance, and skewness:
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Discrete Probability Distributions

Special Cases
– If the function Y = g(X) = a + b X, then

Where a and b are real numbers.

( ) ( )
( ) ( )XbY

XbaY
VarVar
EE
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Discrete Probability Distributions

Special Cases
– If the function Y = g(X) is given by

Then

( ) nn XaXaXaagY ++++== ...22110X
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Discrete Probability Distributions

Example: Three Cars
• If there are three cars, the following situations 

are possible:
– All three cars in good condition.
– Two cars are good and one is bad.
– One car is good and two cars are bad.
– All three cars are in bad condition

B
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B

G
B
B
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G
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B
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B
G
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G
B

G
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G

G

G

S

Venn Diagram
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Discrete Probability Distributions

Example: Three Cars
• Assume that a car will be in good condition 90% of the time and 

in bad condition 10% of the time.
• Thus, P(G) = 0.90 and P(B) = 0.10
• If X is a random variable representing the number of good cars 

at a given time, for this problem, X = 0, 1, 2, or 3.
• The PMF’s for these values of X can be computed as shown in 

the next viewgraph.
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Discrete Probability Distributions

Example (cont’d): Three Cars
– PMF for three cars
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Discrete Probability Distributions

Example (cont’d): Three Cars
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Discrete Probability Distributions

Example (cont’d): Three Cars
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Continuous Probability Distributions
Continuous uncertain quantities.  The uncertain quantity can 

take any value within some range.
Example:

The temperature tomorrow at O’Hara Airport in Chicago at noon 
is an uncertain quantity that can be anywhere between, say, 50ºF
and 120º F.
Note:
1. With continuous uncertain quantities, it is not reasonable to speak of 

the probability that that a specific value occurs.
2. The probability of a particular value occurring is equal to zero:  P(Y = 

y) = 0.  
3. The probability of any particular value must be infinitely small.
4. We typically speak of interval probabilities:  P (a < Y < b).  The CDF for 

a continuous uncertain quantity can be constructed on the basis of 
such intervals.
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Continuous Probability Distributions
Example:

Let us suppose we are interested in a movie star’s age.  Table 
of cumulative probabilities for a move star’s age.

P(Age < 29) = 0.00
P(Age < 40) = 0.05
P(Age < 44) = 0.50
P(Age < 50) = 0.85
P(Age < 65) = 1.00

1.00

0.75

0.50

0.25

10 20 30 40 50 60 70
Years

P(Age < Years)

The CDF allows us to 
calculate the probability 
for any interval.
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Continuous Probability Distributions
The CDF for a continuous uncertain quantity corresponds closely 

to the CDF for the discrete case.  The density function f(x) can be 
built up from the CDF.  It is a function in which the area under the 
curve within a specific interval represents the probability that the 
uncertain quantity will fall in that interval.
Example:

The density function f(Age) for the movie star’s age might look 
something like the graph below:

10 20 30 40 50 60    70
Years

P(40 < Age < 50)

Probability density
function for movie 
star’s age.
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Continuous Probability Distributions

5045 65

P

F

f(x)

Note
– Unlike discrete r.v.’s, continuous ones can taken as a 

specific value within probability of zero.
P(X=x)=0 for continuous r.v. X

– Can have P(a≤X≤b) > 0 (ranges)
– Instead of probability mass function (discrete r.v.), we have 

probability density function. (continuous r.v.)
Example: Temperature X at College Park at noon throughout the year:

P(45≤X≤65) = ?
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Continuous Probability Distributions

– The probability density function (PDF)
defines the probability of occurrence for a 
continuous random variable.

– The probability that the random variable X
lies within the interval from x1 to x2 is given 
by:

( ) ( )
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Continuous Probability Distributions

– If the interval is made infinitesimally small, 
x1 approaches x2 and P(x1≤X ≤x2) 
approaches zero.

– This illustrates a property that distinguishes 
discrete random variables from continuous 
variables.

– Therefore, the probability that a continuous 
random variable takes on a specific value 
equals zero 
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Continuous Probability Distributions

– Some Useful Properties:
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Continuous Probability Distributions

– The cumulative distribution function
(CDF) of a continuous random variable is 
defined by

( ) ( ) ( )

( ) functiondensity y probabilit where
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Continuous Probability Distributions

Example A:
The continuous random variable X has the 
following probability density function:

where k is a constant.  Find the value of k that 
is necessary for fX(x) to be a legitimate 
probability density function.

( )
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Continuous Probability Distributions

Example A (cont’d):
Plot both the density and cumulative functions.  
What is the probability that X equals 1?  What 
is the probability that X takes on a value less 
than 0.5?  What is the probability that X is 
greater than 1.0 and less than 1.5?

For fX(x) to be a legitimate PDF, it must satisfy 
the following equation:

( ) ( ) 1d P ==+∞<<∞− ∫
+∞

∞−

xxfX X
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Continuous Probability Distributions

Example A (cont’d):
Therefore,

The cumulative distribution function is given by
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Continuous Probability Distributions

Example A (cont’d):
The density and cumulative functions are 
provided in the following table:

x Density Function, f X (x ) Cumulative Distribution Function, F X(x)
0 0 0

0.5 0.25 0.0625
1 0.5 0.25

1.5 0.75 0.5625
2 1 1

( )
4

2
0

0
xxFX =( )
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Continuous Probability Distributions

Example A (cont’d):
Probability Density Function, f X (x )
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Continuous Probability Distributions

Example A (cont’d):
Cumulative Distribution Function
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Continuous Probability Distributions

Example A (cont’d):
• Because probabilities of continuous random 

variables are defined for regions rather than 
point values,

• The P(X<0.5) can be determined from the 
cumulative function as
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Continuous Probability Distributions

Example A (cont’d):
• Similarly, the cumulative function can be used 

to find the probability for the following region:
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Continuous Probability Distributions

Example A (cont’d):
Probability Density Function, f X (x )

0

0.2

0.4

0.6

0.8

1

1.2

0 0.5 1 1.5 2 2.5

x  Value

D
en

si
ty

 F
un

ct
io

n,
 f x

( x
)

Shaded area under the curve = P(1.0 <X<1.5)

x Density Function, f X (x ) Cumulative Distribution Function, F X(x)
0 0 0

0.5 0.25 0.0625
1 0.5 0.25

1.5 0.75 0.5625
2 1 1

( ) 313.0
2

5.075.015.1  area =
+

−=
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Continuous Probability Distributions

Measures of Probability
– Expected Value (Mean or Average)

– Variance

– Standard Deviation, σ

– Coefficient of variation (COV)

– Skewness
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Continuous Probability Distributions

Measures of Continuous Random Variables
• If X is a continuous random variable with PDF fX(x), 

the following expressions can be used to compute 
the mean, variance, and skewness:

( ) ( )

( ) ( )

( ) ( ) xxfx

xxfxX
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Continuous Probability Distributions

Measures Continuous Random Variables
• Useful expression for the Variance

( ) ( )
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µ                                        
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Continuous Probability Distributions

Example B
For the continuous random variable X of Example 
A that has the following probability density 
function:

Determine the mean, variance, standard deviation, 
and coefficient of variation (COV) of the random 
variable X.

( )
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Continuous Probability Distributions

Example B (cont’d):
The density and cumulative functions are 
provided in the following table:

x Density Function, f X (x ) Cumulative Distribution Function, F X(x)
0 0 0

0.5 0.25 0.0625
1 0.5 0.25

1.5 0.75 0.5625
2 1 1
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Continuous Probability Distributions

Example B (cont’d):
– The mean value can be computed as 

follows:

– The variance can be calculated as follows:

( ) ( )
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4d )5.0(d µ
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Continuous Probability Distributions

Example (cont’d):
– The standard deviation and the coefficient 

of variation (COV) can be computed as 
follows:

( ) 3771.0
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