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Methodology of Modeling 
Uncertainty

The Methodology of Modeling Uncertainty is described in five 
chapters that mainly concentrating on how to model uncertainty 
using probabilities and information as follows:

Probability Basics: reviews fundamental probability concepts.

Subjective probability: translates beliefs & feelings about 
uncertainty in probability for use in decision modeling.

Theoretical Probability Models: helps with representing 
uncertainty in decision modeling

Using Data: uses historical data for developing probability 
distributions

Monte Carlo Simulation: to give the decision-maker a fair 
idea about the probabilities associated with various outcomes.

Value of Information: explores the value of information within 
the decision-analysis framework.

Detailed Steps

Chapter 7

Chapter 8

Chapter 9

Chapter 10

Chapter 11

Chapter 12
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Introduction to Simulation

Simulation Techniques
– Simulation is a process of replicating the 

real world based on a set of assumptions 
and conceived models of reality.

– Simulation can be performed either:
• Experimentally, or

• Theoretically

– In practice, theoretical simulation is 
performed (inexpensive).
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Introduction to Simulation

– Simulation may be applied in engineering to 
predict or study the performance and response of 
a system.

– Simulation can be used to verify the accuracy of 
structural reliability methods with little background 
in probability and statistics.

– A simulation method can provide estimates for any 
problem, whereas analytical methods may not 
always converge in their iterations
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Introduction to Simulation

Need for Simulation and Data Analysis
– Examples:

• Transportation engineers frequently use traffic counts at 
intersection or accident data for various configurations of 
control signals in designing highways.  However, if these 
data are insufficient or costly, they resort to simulation.

• Environmental engineers collect data on water quality 
and analyze these data to decide upon the type of water 
treatment that is needed.  Unfortunately, stream-flow 
records often do not include extreme floods that are 
important in evaluating flood risk.  For this reason, they 
use simulated data to help making decisions.
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Introduction to Simulation

Example: Simulation by Coin Flipping
– Water quality for a particular location on a 

river
• Assumptions

– About 50% of the time acceptable

– 50% of the time unacceptable

– Data was obtained for the last two weeks (14 days)

» AAUAUUAUUAAAUA

– Damage to aquatic life occurs if the water quality is 
unacceptable for three or more consecutive daysA = acceptable

U = unacceptable
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Introduction to Simulation

Conclusion
– According to the real data, the water 

quality was of acceptable quality 8/14 = 
0.57 (57%) of the days and there were no 
instances of aquatic damage.

Should the engineer, therefore, believe that aquatic damage will not
occur in the future? Of course not!
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Use of simulation to make a decision 
based on the probability of aquatic 
damage in the future
– Flipping a coin 56 times produces the 8-

week sequence:
HHTHTHHHHHTHTHTTHTTTHTHHHTHT

THTTTTHHTHHHTHTHTHTTHHHTTHTH

Introduction to Simulation

H = head (acceptable)
T = tail (unacceptable)
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Introduction to Simulation

Conclusions
– If a tail is considered an acceptable water 

quality, then two occurrences of 
unacceptable quality happened in 8 weeks

– This represents 4 weeks or 13 times a year
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Generation of Random Numbers

Flip of a Coin
• For one event, only one of the two possible 

outcomes can occur, H or T
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Generation of Random Numbers

Flipping of Two Coins
– Outcome

• (T,T), (H,T) or (T,H), and (H,H)

– Let

• (T,T) = 0

• (H,T) or (T,H) = 1

• (H,H) = 2

• X = number of heads

– Then, the probability P(x) can be graphed as
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Generation of Random Numbers
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Generation of Random Numbers

Rolling of Dice
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Generation of Random Numbers

Rolling of a Single Die

– If the random events were generated with 
the roll of single die, one of the six 
outcomes is possible.  If the die is fair, 
each outcome y is equally likely, and each 
would have a probability of 1/6.

– Graphically, this can be presented as
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Generation of Random Numbers
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Generation of Random Numbers

Rolling of Two Dice
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Generation of Random Numbers

Rolling of Two Dice (cont’d)
– If a pair of dice rolled simultaneously, the 

probability of the sum of dots from the two 
dice would appear graphically as shown in 
the following figure:
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Generation of Random Numbers
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Generation of Random Numbers
Discrete versus Continuous Values
– In each of the previous cases, only integers values 

were possible.  For example, if a single die is 
rolled, a value of 4.6 is not possible.

– Values from a flip of coin or a roll of a die are 
discrete (i.e., integers 1,2, …).

– Examples: Engineering Cases:
• Number of traffic fatalities
• Number of floods per decade
• Number of earthquakes above 6 per century
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Generation of Random Numbers

Discrete versus Continuous Values
– Values on continuum could be generated 

with spinner (some board games) placed 
over a 3600 protractor.

– Examples: Engineering Cases:
• Stopping distance of as car

• Magnitude of a flood

• Compression strength of concrete

• Weight of fertilizer used per acre
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Generation of Random Numbers

Probability of the outcome of a spin is 1/360
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Generation of Random Numbers

– Transformation of the angle A to a new variable B can be 
accomplished by requiring that B takes values from 0 to 1.  
This can be done using B = A/360
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Computer Generation of Random 
Numbers

– Computer software packages are available

– The generated random numbers from 
these packages are called pseudo random 
numbers

– These numbers are generated from a well-
defined and predictable process 
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Computer Generation of Random 
Numbers

Midsquare Method
– This method illustrates the problems associated 

with deterministic procedures
– The general procedure is as follows:

• Select at random a four-digit number (seed)
• Square the number and write the square as an eight-

digit number using preceding (lead) zeros if necessary
• Use the four digits in the middle as the new random 

number.
• Repeat steps 2 and 3 to generate as many numbers as 

necessary
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Computer Generation of Random 
Numbers

Example 1: Midsquare Method
– Consider the seed number 2189.  This value 

would produce the following:
– 04791721
– 62678889
– 46076944
– 00591361
– 34963569
– 92833225
– 69422224
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Computer Generation of Random 
Numbers

Example 2: Midsquare Method
– Consider the seed number 3500.  This value 

would produce the following:

– 12250000

– 06250000

– 06250000

– 06250000

– The above random-number sequence is not good 
for statistical purposes.

– Other more reliable methods for generating 
random numbers are available.
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Transformation of Random 
Variables

How can flips of a coin be generated 
with a die?
– This can be accomplished by transforming 

the value of the die to the value of the coin.

– The die is rolled and an occurrence of a 1, 
2, or 3 would constitute a head, while 4, 5, 
or 6 would constitute a tail.

– This can be presented graphically as
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Transformation of Random 
Variables
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Transformation of Random 
Variables
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Simulation and Probability 
Distribution

Need for Simulation
– Simulation is used to verify the accuracy of 

structural reliability methods with little 
background in probability and statistics.

– Measured data are often very limited, and 
making decision with small sample sizes 
increases the risk of incorrect decision.
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Simulation and Probability 
Distribution

Monte Carlo Simulation
– Monte Carlo simulation has six essential 

elements:
1. Defining the problem in terms of all the random 

variables,

2. Quantifying the probabilistic characteristics of all the 
random variables (i.e., mean, COV, distribution type),

3. Generating the values of these random variables
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Simulation and Probability 
Distribution

Monte Carlo Simulation (cont’d)
4. Evaluating the problem deterministically for 

each set of all the random variables,

5. Extracting probabilistic information from n
observations.

6. Determining the accuracy and efficiency of 
the simulation.
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Simulation and Probability 
Distribution

Formulation of the Problem
– Consider a simply supported beam as 

shown
P

w

L/2

L
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Simulation and Probability 
Distribution

– Assume both w and P are random 
variables.

– Thus, the design bending moment M at the 
midspan of the beam is also a random 
variable.

– The task now is to evaluate the 
probabilistic characteristics of the design 
bending moment using simulation.
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Simulation and Probability 
Distribution

– If the span of the beam is 30 feet, the 
expression for the design moment can 
written as

– W and P in this case are called basic 
random variables.

Pw

PLwLM

5.75.112    
48

2

+=

+=
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Generation of Random Variables
– Computer software packages are available 

(e.g., Excel, Quattro Pro, etc.)

– The generated random numbers from 
these packages are called pseudo random 
numbers

– These numbers are generated from a well-
defined and predictable process 

Simulation and Probability 
Distribution
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Simulation and Probability 
Distribution

Midsquare Method
– This method illustrates the problems associated 

with deterministic procedures
– The general procedure is as follows:

1. Select at random a four-digit number (seed)
2. Square the number and write the square as an eight-

digit number using preceding (lead) zeros if necessary
3. Use the four digits in the middle as the new random 

number.
4. Repeat steps 2 and 3 to generate as many numbers as 

necessary
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Example 1: Midsquare Method
– Consider the seed number 2189.  This value 

would produce the following:
04791721
62678889
46076944
00591361
34963569
92833225
69422224

Simulation and Probability 
Distribution
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Simulation and Probability 
Distribution

Transformation of Uniform Random 
Numbers
– The Uniform Distribution
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Simulation and Probability 
Distribution

Inverse Transformation Technique or 
Inverse CDF Method
– In the in inverse transformation technique 

or inverse CDF method, the CDF of the 
random variable is equated to the 
generated random number ui, that is ,  
FX(xi) = ui, and the equation can be solved 
for xi as follows:

( )iXi uFx 1−=
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Simulation and Probability 
Distribution

Example: Normal Distribution
• If X is normally distributed, that is X ~ N(µ,σ2), 

then Z = (X- µX)/σX is a standard normal 
variate, that is, Z ~ N(0,1).  It can be shown that

( ) ( )

( )iXXiXXi

X

Xi
i

X

Xi
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uzx

xz

xzxFu
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Simulation and Probability 
Distribution

Example: Lognormal Distribution
If X is lognormally distributed, that is                  
X ~ LN(µ,σ2), then Z = (lnX- µY)/σY is a 
standard normal variate, that is, Z ~ N(0,1).  It 
can be shown that
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( )[ ]iYY u
i

iYYi

Y

Yi
iiXi

ex

ux

xzxFu

1σµ

1

              

Thus,
σµln                

or
σ

µln

−Φ+

−

=

Φ+=








 −
Φ=Φ==



23

CHAPTER 11b. MONTE CARLO SIMULATION Slide No. 44
ENCE 627 ©Assakkaf

Simulation and Probability 
Distribution

Example: Simply Supported Beam
• The simply supported beam is subjected to the 

external loading w and P as shown in the 
figure.  The probabilistic characteristics of the 
basic random variables are as follows:

Normal0.20.102w
Lognormal3.00.1520P

Deterministic--30L

Distribution 
Type

Standard 
Deviation

COVMeanRandom 
Variable
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Example (cont’d): Simply Supported Beam
P

w

L/2

L

PwPLwLM 5.75.112
48

2

+=+=

Simulation and Probability 
Distribution



24

CHAPTER 11b. MONTE CARLO SIMULATION Slide No. 46
ENCE 627 ©Assakkaf

Example (cont’d): Simply Supported 
Beam

1. Simulate the design moment M for 10 values.

2. Also, Find the mean, variance, standard deviation, 
and coefficient of variation of M using the simulated 
sample values.

PwPLwLM 5.75.112
48

2

+=+=

Simulation and Probability 
Distribution
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Example (cont’d): Simply Supported Beam

PwM 5.75.112 +=

Mean (w ) = 2 Mean (P ) = 20
Stdev (w ) = 0.2 Stdev (P ) = 3

u 1 u 2 w P M
0.388248947 0.874573 1.94322 23.47394542 394.6671
0.082540402 0.840615 1.72236 22.95014085 365.8919
0.891083258 0.540006 2.24646 20.07731226 403.3068
0.607604281 0.492971 2.05462 19.72681305 379.0954
0.682506093 0.103666 2.09494 16.38747866 358.5872
0.316169559 0.312569 1.90431 18.38852828 352.1491
0.949955696 0.726221 2.32889 21.63514737 424.2632
0.430819593 0.290549 1.96514 18.21599244 357.6985
0.697860999 0.904197 2.10365 24.0322073 416.9024
0.331143892 0.375488 1.91265 18.8642452 356.6548

Mean (M ) = 380.9 kip-ft
Variance (M ) = 727.5 kip-ft2

Stdev (M ) = 27.0 kip- ft
COV (M ) = 0.071

Simulation and Probability 
Distribution
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Simulation and Probability 
Distribution

Example (cont’d): Simply Supported Beam
– Sample Calculations

• Consider the second row in the table:
– a) w: is normal

( ) ( )

( )
( ) ( )
( ) 722.1)39.1(2.0291746.02.02   

08254.012.0208254.00.22   

σµσµ
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– Sample Calculations
B) P: is lognormal 149.0

20
31ln

µ
σ1lnσ

22

=

















+=




















+=

X

X
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Simulation and Probability 
Distribution
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Simulation and Probability 
Distribution

Example (cont’d): Simply Supported 
Beam
– Sample Calculations

• Consider the the second row in the table
– C) M:

( ) ( )
ft-kip 90.365    

957.225.7722.15.112     
5.75.112

=
+=

+= PwM
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Functions of Random Variables
Approximate Methods
– Taylor Series Expansion

A Taylor series is commonly used in engineering analysis to 
approximate functions that do not have closed form solution.  
The Taylor series is given by

where
x0 = base value or starting value
x = the point at which the value of the function is needed
h = x – x0 = distance between x0 and x (step size)
n! = factorial of n = n(n-1) (n – 2)…1
f(n) = indicates the nth derivative of the function f(x)
Rn+1 = the remainder of Taylor series expansion

( ) ( ) ( )( ) ( )( ) ( )( ) ( )( ) 100
3

3

0
2

2

0
1

00 !
...

!3!2 +++++++=+ n
n

n

Rxf
n
hxfhxfhxhfxfhxf
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Approximate Methods
– Taylor Series Expansion

• First-order approximation

• Second-order approximation

• Third-order approximation

( ) ( ) ( )( )0
1

00 xhfxfhxf +=+

( ) ( ) ( )( ) ( )( )0
2

2

0
1

00 !2
xfhxhfxfhxf ++=+

( ) ( ) ( )( ) ( )( ) ( )( )0
3

3

0
2

2

0
1

00 !3!2
xfhxfhxhfxfhxf +++=+

Functions of Random Variables
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Approximate Methods
– The Taylor series expansion can be used 

to approximate the mean and variance of 
a function of random variables Y = g(X)

– Two cases to be considered:
1. Single random variable X

2. Multiple random variables, a random vector X

Functions of Random Variables
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Approximate Methods
– Single Random Variable X

The Taylor series expansion of a function Y = 
g(X) about the mean of X (E(X)) is given by

( ) ( ) ( ) ( ) ( ) ( )
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Functions of Random Variables
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Approximate Methods
– Single Random Variable X
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Functions of Random Variables
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Approximate Methods
– Single Random Variable X

( )[ ] ( )[ ] ( )
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Functions of Random Variables
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Approximate Methods
– Single Random Variable X
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Functions of Random Variables
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Approximate Methods (single RV)
– First-order (approximate ) Mean

– First-order (approximate) Variance

( ) ( )[ ]XgY Y EµE ==

( ) ( )
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Example: Pressure of Ocean Waves
The maximum impact pressure of ocean waves on 
coastal structures may be determined by

Where ρ = density of water, K = length of hypothetical 
piston, D = thickness of air cushion, V = horizontal 
velocity of advancing wave.  Suppose that the mean 
crest velocity V is 4.5 ft/sec with COV of 0.2. ρ, K, and D 
are constants.  If ρ = 1.96 slugs/cu ft, and the ratio K/D = 
35, determine the mean and standard deviation of the 
peak impact pressure. 

D
KV 2

max
ρ7.2ρ =
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Example (cont’d): Pressure of Ocean 
Waves

( ) ( )[ ] ( )( )( )
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and

psf 7.37505.43596.17.2EµρE

maxρ

222
2

5.4

max
max

2

5.4

max

2
ρmax max

==∴

=×=







≈∴

===







=

==≈=

=

=

V
dV
d

D
KV

D
KV

dV
d

dV
d

Vg

V

V

Functions of Random Variables

CHAPTER 11b. MONTE CARLO SIMULATION Slide No. 61
ENCE 627 ©Assakkaf

Approximate Methods (Random Vector)
– First-order (approximate ) Mean

– First-order (approximate) Variance
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Approximate Methods (Random Vector)
– First-order (approximate) Variance

If the Xi’s are uncorrelated 
(statistically independent), then
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( )∑
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Example 1:
Assume that the random variable Y can be 
represented by the following relationship:

where X1, X2, and X3 are statistically 
independent random variables with mean 
values of 1.0, 1.5, and 0.8, respectively, and 
corresponding standard deviations of 0.1, 0.2, 
and 0.15, respectively. Find the first-order 
mean and standard deviation of Y.

3/1
3

2
21 XXXY =
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Example 1 (cont’d):
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Example 1 (cont’d):
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Example 1 (cont’d):
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Example 2:
The stress F in a beam subjected to an external 
bending moment M is

where y is the distance from the neutral axis of 
the cross section of the beam to the point 
where the stress is calculated, and I = is the 
centriodal moment of inertia of the cross 
section.  Assume that M and I are random 
variables with means µM and µI, respectively, 
and variances σM and σI, respectively.

I
MyF =
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Example 2(cont’d):
Determine the mean and variance of F based 
on first-order approximation.
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Example 2(cont’d):
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Multivariable Simulation

– Simulation can be used to study the 
probabilistic characteristics of a function of 
random variables.

– It can provides information about the 
distributions of random variables that is 
beyond the ability of theory.

– Theoretical relationships are often based 
on restrictive assumptions, such as normal 
distributions, that may not be valid for a 
given problem.
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Stress at Extreme Fibers of a Beam
– The stress at the extreme fibers of steel 

beam is given by

– To estimate the mean and standard 
deviation of σ, we can use the first-order 
approximation as discussed previously, 
regardless of the distribution types of the 
basic random variables c and I.

I
Mc

=σ

Multivariable Simulation
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Stress at Extreme Fibers of a Beam
– Simulation can also be used to study 

the probabilistic characteristics of σ, 
such as the mean and standard 
deviation.

– However, the distribution types of the 
basic random variables c and I are 
required.

Multivariable Simulation
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Stress at Extreme Fibers of a Beam

Normal801000I

Lognormal9003000M

Normal0.510c

Distribution 
Type

Standard 
DeviationMeanRandom 

Variable
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Stress at Extreme Fibers of a Beam
– First-order Approximate mean and standard deviation of M
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Stress at Extreme Fibers of a Beam
• Simulation result for the mean and standard deviation of M

67.9σ ofDeviation  Standard         
15.30σ ofMean                               

cycles, simulation 1000For 

=
=

# Cycles u1 u2 u3 M c I σ
1 0.902062 0.735778 0.290168 4200.533 10.31519 955.7684 45.33453
2 0.94779 0.350819 0.607922 4628.371 9.808445 1021.913 44.42368
3 0.458328 0.615189 0.984024 2786.548 10.14643 1171.601 24.13239
4 0.450338 0.312857 0.78368 2770.104 9.756117 1062.775 25.42915
5 0.978812 0.734305 0.822165 5214.236 10.31294 1073.892 50.07405

. . . . . . .

. . . . . .
1000 0.708552 0.253279 0.665872 3376.147 9.667897 1034.283 31.55831
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Stress at Extreme Fibers of a Beam
– Comparison Between Approximate Method 

and Simulation

9.679.43Standard Deviation of σ

30.1530.00Mean of σ

SimulationApproximation
I
Mc

=σ
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