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Methodology of Modeling

Uncertainty

The Methodology of Modeling Uncertainty is described in five
chapters that mainly concentrating on how to model uncertainty
using probabilities and information as follows:

A -
Cripcg e

v Probability Basics: reviews fundamental probability concepts. Chapter 7

v Subjective probability: translates beliefs & feelings about

uncertainty in probability for use in decision modeling. Chapter 8

v Theoretical Probability Models: helps with representing

uncertainty in decision modeling Chapter 9

v Using Data: uses historical data for developing probability

distributions Chapter 10

v Monte Carlo Simulation: to give the decision-maker a fair

idea about the probabilities associated with various outcomes. Chapter 11

v Value of Information: explores the value of information within

the decision-analysis framework. Chapter 12
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Introduction to Simulation

m Simulation Techniques

— Simulation is a process of replicating the
real world based on a set of assumptions
and conceived models of reality.

— Simulation can be performed either:

» Experimentally, or

» Theoretically

— In practice, theoretical simulation is
performed (inexpensive).
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Introduction to Simulation
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— Simulation may be applied in engineering to
predict or study the performance and response of
a system.

— Simulation can be used to verify the accuracy of
structural reliability methods with little background
in probability and statistics.

— A simulation method can provide estimates for any
problem, whereas analytical methods may not
always converge in their iterations
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i Introduction to Simulation

m Need for Simulation and Data Analysis
— Examples:

» Transportation engineers frequently use traffic counts at
intersection or accident data for various configurations of
control signals in designing highways. However, if these
data are insufficient or costly, they resort to simulation.

* Environmental engineers collect data on water quality
and analyze these data to decide upon the type of water
treatment that is needed. Unfortunately, stream-flow
records often do not include extreme floods that are
important in evaluating flood risk. For this reason, they
use simulated data to help making decisions.
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ntroduction to Simulation

m Example: Simulation by Coin Flipping
— Water quality for a particular location on a
river

* Assumptions
— About 50% of the time acceptable

— 50% of the time unacceptable

— Data was obtained for the last two weeks (14 days)
» AAUAUUAUUAAAUA

— Damage to aquatic life occurs if the water quality is

A = acceptabl .
acceplab®  unacceptable for three or more consecutive days

U = unacceptable

er
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g Introduction to Simulation

m Conclusion

— According to the real data, the water
quality was of acceptable quality 8/14 =
0.57 (57%) of the days and there were no
instances of aquatic damage.

Should the engineer, therefore, believe that aquatic damage will not
occur in the future? Of course not!
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Introductlon to Simulation

m Use of simulation to make a decision
based on the probability of aquatic
damage in the future

— Flipping a coin 56 times produces the 8-
week sequence:
HHTHTHHHHHTHTHTTHTTIHTHHHTHT
THTTTTHHTHHHTHTHTHTTHHHTTHTH

H = head (acceptable)
T = tail (unacceptable)
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Introductlon to Simulation

m Conclusions

— If a tail is considered an acceptable water
quality, then two occurrences of
unacceptable quality happened in 8 weeks

— This represents 4 weeks or 13 times a year




.5‘

B
fli-

'h’x W

Slide No. 10

CHAPTER 11b. MONTE CARLO SIMULATION
ENCE 627 OAssakkaf

Generation of Random Numbers

m Flip of a Coin

* For one event, only one of the two possible
outcomes can occur, Hor T

Probability

Outcome
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Generatlon of Random Numbers

m Flipping of Two Coins

— Outcome

« (T,T), (H,T) or (T,H), and (H,H)
— Let

(T, T)=0

* (H,T)or (T,H)=1

« (HH) =

* X = number of heads
— Then, the probability P(x) can be graphed as
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i~ Generation f Random Numbers
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i Generation of Random Numbers

m Rolling of Dice
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i” (3eneration f Random Numbers
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m Rolling of a Single Die
o W W & & o

— If the random events were generated with
the roll of single die, one of the six
outcomes is possible. If the die is fair,
each outcome y is equally likely, and each
would have a probability of 1/6.

— Graphically, this can be presented as
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Generation of Random Numbers
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Generation of Random Numbers

m Rolling of Two Dice
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Generatlon of Random Numbers

m Rolling of Two Dice (cont’d)

— If a pair of dice rolled simultaneously, the
probability of the sum of dots from the two
dice would appear graphically as shown in
the following figure:
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i” (3eneration f Random Numbers
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0.2
Outcome Probability 0.18
2 1/36
0.16
2/36
4 3/36 0.14
5 4/36 > 012
6 5/36 3
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7 6/36 S
8 5/36 8 0.08 1
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10 3/36 0.04
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~ Generation of Random Numbers

m Discrete versus Continuous Values

— In each of the previous cases, only integers values
were possible. For example, if a single die is
rolled, a value of 4.6 is not possible.

— Values from a flip of coin or a roll of a die are
discrete (i.e., integers 1,2, ...).
— Examples: Engineering Cases:
* Number of traffic fatalities
* Number of floods per decade
* Number of earthquakes above 6 per century
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o~ Generation of Random Numbers
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m Discrete versus Continuous Values

— Values on continuum could be generated
with spinner (some board games) placed
over a 3600 protractor.

— Examples: Engineering Cases:

+ Stopping distance of as car

» Magnitude of a flood

» Compression strength of concrete
» Weight of fertilizer used per acre
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i Generation of Random Numbers
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Probability of the outcome of a spin is 1/360
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eneration f Random Numbers

— Transformation of the angle A to a new variable B can be
accomplished by requiring that B takes values from 0 to 1.
Ehis can be done using B = A/360

1

Probability
o o o
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Outcome, B
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ComEuter Generation of Random

Numbers

— Computer software packages are available

— The generated random numbers from
these packages are called pseudo random
numbers

— These numbers are generated from a well-
defined and predictable process
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ComEuter Generation of Random
Numbers

m  Midsquare Method

— This method illustrates the problems associated
with deterministic procedures

— The general procedure is as follows:
» Select at random a four-digit number (seed)

Square the number and write the square as an eight-
digit number using preceding (lead) zeros if necessary

Use the four digits in the middle as the new random

d
iy e

number.
Repeat steps 2 and 3 to generate as many numbers as
necessary
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ComEuter Generation of Random
Numbers

m Example 1: Midsquare Method

— Consider the seed number 2189. This value
would produce the following:

— 04791721
— 62678889
— 46076944
— 00591361
— 34963569
— 92833225
— 69422224
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ComEuter Generation of Random
Numbers
m Example 2: Midsquare Method

— Consider the seed number 3500. This value
would produce the following:

— 12250000
— 06250000
— 06250000
— 06250000

— The above random-number sequence is not good
for statistical purposes.

— Other more reliable methods for generating
random numbers are available.
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'~ Transformation of Random

Variables

m How can flips of a coin be generated
with a die?

— This can be accomplished by transforming
the value of the die to the value of the coin.

— The die is rolled and an occurrence of a 1,
2, or 3 would constitute a head, while 4, 5,
or 6 would constitute a tail.

— This can be presented graphically as
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Die Outcome

Coin Outcome

2 CHAPTER 11b. MONTE CARLO SIMULATION Slide No. 29
ﬁl‘ 5 ENCE 627 ©Assakkaf

o Transformation of Random

Variables
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“ Simulation and Probabilitz

Distribution
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m Need for Simulation

— Simulation is used to verify the accuracy of
structural reliability methods with little
background in probability and statistics.

— Measured data are often very limited, and
making decision with small sample sizes
increases the risk of incorrect decision.
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g~ Simulation and Probability

Distribution

m  Monte Carlo Simulation

— Monte Carlo simulation has six essential
elements:

1. Defining the problem in terms of all the random
variables,

2. Quantifying the probabilistic characteristics of all the
random variables (i.e., mean, COV, distribution type),

3. Generating the values of these random variables
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g~ Simulation and Probability

Distribution

&

s Monte Carlo Simulation (cont’d)

4. Evaluating the problem deterministically for
each set of all the random variables,

5. Extracting probabilistic information from n
observations.

6. Determining the accuracy and efficiency of
the simulation.
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m Formulation of the Problem

— Consider a simply supported beam as

shown

P
I
e QO
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“ Simulation and Probabilitz

Distribution
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— Assume both w and P are random
variables.

— Thus, the design bending moment M at the
midspan of the beam is also a random
variable.

— The task now is to evaluate the
probabilistic characteristics of the design
bending moment using simulation.

—
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“ Simulation and Probabilitz

Distribution

— If the span of the beam is 30 feet, the
expression for the design moment can

é‘ &

written as
2
vl PL
8 4
=112.5w+7.5P

— W and P in this case are called basic
random variables.
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i Stmulation and Probabilitz

Distribution
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m Generation of Random Variables

— Computer software packages are available
(e.g., Excel, Quattro Pro, etc.)

— The generated random numbers from
these packages are called pseudo random
numbers

— These numbers are generated from a well-
defined and predictable process

—
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s~ Simulation and Probabilit

Distribution
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m  Midsquare Method

— This method illustrates the problems associated
with deterministic procedures

— The general procedure is as follows:

1. Select at random a four-digit number (seed)

2. Square the number and write the square as an eight-
digit number using preceding (lead) zeros if necessary

3. Use the four digits in the middle as the new random
number.

4. Repeat steps 2 and 3 to generate as many numbers as
necessary
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* Simulation and Probabilitz
Distribution

m Example 1: Midsquare Method

— Consider the seed number 2189. This value
would produce the following:

04791721
62678889
46076944
00591361
34963569
92833225
69422224

=
:«‘i\
K
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* Simulation and Probabilitz
Distribution

m [ransformation of Uniform Random

Numbers
— The Uniform Distribution
0 forx<0
Fo(x)= x4 fora<x<b
b-a
1 forx>b

where a < b. The mean and variance are given by

2
5 and oy = (b-af Iza)

a+b
My =
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“Simulation and Probabilitz

Distribution

m Inverse Transformation Technique or
Inverse CDF Method

—In the in inverse transformation technique
or inverse CDF method, the CDF of the
random variable is equated to the
generated random number ui, that is ,
FX(xi) = ui, and the equation can be solved

for xi as follows: 1
x, =Fy (ui )
247 _CHAPTER 11b. MONTE CARLO SIMULATION Slide No. 41
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Fuy(u) Fx(x)
1, N
F08 g
..... e
r06 064

r04 044

F02 024

0.8 0.6 0.4 0.2 0 0
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i Simulation and Probabilit

Distribution
m Example: Normal Distribution
« If X'is normally distributed, that is X ~ N(u,02),

then Z = (X- uX)/cX is a standard normal
variate, that is, Z~ N(0,1). It can be shown that

e
H

Thus,
X; =Wy +0yz, =Hy +6x®7l(ui)

CHAPTER 11b. MONTE CARLO SIMULATION Slide No. 43
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i~ Simulation and Probabilit

Distribution

m Example: Lognormal Distribution
If X is lognormally distributed, that is
X ~ LN(u,02), then Z = (InX- py)/oyis a
standard normal variate, that is, Z~ N(0,1). It
can be shown that

T
;"%\
K

£

u; = FX(xi)z q)(zi):q{m—_uy]
Y
or
ln(xl.)z Hy + qu)’l (”z)
Thus,

¥, = e[pyﬂsyd)’] (u; )]

1
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i Simulation and Probabilit

Distribution
m Example: Simply Supported Beam

* The simply supported beam is subjected to the
external loading w and P as shown in the
figure. The probabilistic characteristics of the
basic random variables are as follows:

Random Mean Cov Standard | Distribution
Variable Deviation | Type
L 30 - - Deterministic
w 2 0.10 0.2 Normal
P 20 0.15 3.0 Lognormal
- - CHAPTER 11b. MONTE CARLO SIMULATION Slide No. 45
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m Example (cont'd): Simply Supported Beam

P

w
I

L

| L
| L

2
M:%+%:112.5w+7.5P
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g~ Simulation and Probabilit

Distribution

m  Example (cont’d): Simply Supported
Beam

1. Simulate the design moment M for 10 values.

2. Also, Find the mean, variance, standard deviation,
and coefficient of variation of M using the simulated
sample values.

2
M :%+%:112.5w+751)

247 _CHAPTER 11b. MONTE CARLO SIMULATION Slide No. 47
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i Simulation and Probabilit

Distribution

] Example (cont’d): Simply Supported Beam

Mean (w) = 2 Mean (P) = 20
Stdev (W)= 0.2 Stdev (P) = 3
u, u, w P M

0.388248947| 0.874573| 1.94322| 23.47394542| 394.6671
0.082540402| 0.840615[ 1.72236| 22.95014085| 365.8919
0.891083258| 0.540006] 2.24646] 20.07731226| 403.3068
0.607604281| 0.492971| 2.05462| 19.72681305| 379.0954
0.682506093| 0.103666] 2.09494| 16.38747866| 358.5872
0.316169559| 0.312569[ 1.90431| 18.38852828| 352.1491
0.949955696| 0.726221| 2.32889| 21.63514737| 424.2632
0.430819593| 0.290549] 1.96514| 18.21599244| 357.6985
0.697860999| 0.904197| 2.10365|  24.0322073| 416.9024
0.331143892| 0.375488| 1.91265 18.8642452| 356.6548

Mean (M) = 3809  Kip-Tt

. Variance (M) = 7275  kip-ft’

M =112.5w+7.5P Stdev (M) = 270 kip-ft
cov (M)=  0.071
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g Simulation and Probability
Distribution
m Example (cont'd): Simply Supported Beam

— Sample Calculations

» Consider the second row in the table:

w—L, j
GU'

— a) w: is normal
1=y 0)=016)-of

X~ Hy

(¢}

or z=
W

Therefore,

w=W, +6,z=LU, +c,D l(u])
=2+0.2x®7(0.08254)=2+0.2x -0 (1-0.08254)
=2-02x®7(0.91746)=2-0.2(1.39) ~ 1.722

247 _CHAPTER 11b. MONTE CARLO SIMULATION Slide No. 49

g Simulation and Probabilit

Distribution

— Sample Calculations - a
B) P:is Io | oy = [In[1+] 22| |= 1+ =] [=0.149
. gnorma i, 20

N

w, = ln(;,lx)—%ci, :1n(20)—%(0.149) =2.9846

InP—p,
u, = CD(WJ or InP=y,+0,0 " (u,)
oy
or

pP= e[p,m)d) ](uz)] _ e[z.oxz&mo.mwm 1(().84001)]

B 6[2_984(,+0,149x(l)" (0_84061)] o 6[2.984(>+0.l49x1] =22 957
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g Simulation and Probabilit

Distribution

m Example (cont’d): Simply Supported
Beam

— Sample Calculations

» Consider the the second row in the table
- C)M:

M =112.5w+7.5P
=112.5(1.722)+7.5(22.957)
=365.90 kip - ft

;%\1'""?% CHAPTER 11b. MONTE CARLO SIMULATION Slide No. 51
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g Functions of Random Variables

m Approximate Methods
— Taylor Series Expansion

A Taylor series is commonly used in engineering analysis to
approximate functions that do not have closed form solution.
The Taylor series is given by

2 3

F 1) = £+ 7 )+

f(3)(x0)+...+h7’:f(")(x0)+ R,
where

X, = base value or starting value

x = the point at which the value of the function is needed

h = x — x, = distance between x, and x (step size)

n! = factorial of n = n(n-1) (n—2)...1

fin = indicates the nt" derivative of the function f(x)

R,.1 =the remainder of Taylor series expansion
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Functlons of Random Variables
m Approximate Methods

— Taylor Series Expansion

* First-order approximation

f(xo +h):f(x0)+hf(l)(x0)

» Second-order approximation
2

P+ 1)= £ 5O )+ 2 ()

 Third-order approximation
2 3
f(xo +h):f(x0)+hf(1)(x0)+hf(z)(x0)+};f( )(xo)

2!
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Functions of Random Variables

m  Approximate Methods

— The Taylor series expansion can be used
to approximate the mean and variance of
a function of random variables Y = g(X)
— Two cases to be considered:

1. Single random variable X
2. Multiple random variables, a random vector X
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Functions of Random Variables

m Approximate Methods
— Single Random Variable X

The Taylor series expansion of a function Y =
g(X) about the mean of X (E(X)) is given by

dg(x) 1 ,dg(x) vd'g(X)
¥ — o) Ly L
g(X)= gy +h)= gl )+h= = L Tae | TR T
_ dg(X) 1 » d’g(X) ! c d'g(X)
Y_g(“X)+[X_HX]dT +E[X ] X’ .+E[X_HX] dx*

Ky

Ky

Hy
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F unctions of Random Variables

m Approximate Methods
— Single Random Variable X

00 =alE (O sV T Slrpf S
+...+%[X—E(X)]k d;i(f() .

If the series is truncated at the second term, then

g(X) = g[E(X)]+ [x —E(x)] dg;}f)

E(X)




—
ENCE 627 ©Assakkaf

" Functions of Random Variables
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m Approximate Methods
— Single Random Variable X
dg(X)
Taking the expectation of both sides, and noting that

E[X —E(X)]=E(X)-E[E(X)]=E(X)-E(X)=0

Hence,

E(Y)=E[g(X)]~ g[E(X)]~ gu,)

g(X) = g[E(X)]+[x -E(x)]

l‘;@“’ CHAPTER 11b. MONTE CARLO SIMULATION Slide No. 57

"F unctions of Random Variables

m Approximate Methods
— Single Random Variable X

2(X) = g[E(X)]+ [x —E(x)] dg;;f)

Taking the variances of both sides, and noting that
Var[g[B(X)]]= Var[g(u, )]=0

Hence,
} :{ dg(X)

E(x)

E(Y)= Var[[X ~E(X)] dg ()

dX
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o~ Functions of Random Variables
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m Approximate Methods (single RV)

— First-order (approximate ) Mean

B(Y)=p, =¢[E(x)]

— First-order (approximate) Vagiance
dg(X)

dX E(X)

VarlV) o - Var(X)

;@r‘? CHAPTER 11b. MONTE CARLO SIMULATION Slide No. 59
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g~ Functions of Random Variables

m Example: Pressure of Ocean Waves

The maximum impact pressure of ocean waves on
coastal structures may be determined by

pKV2

pmax = 2'7

Where p = density of water, K = length of hypothetical
piston, D = thickness of air cushion, V = horizontal
velocity of advancing wave. Suppose that the mean
crest velocity Vis 4.5 ft/sec with COV of 0.2. p, K, and D
are constants. If p = 1.96 slugs/cu ft, and the ratio K/ID =
35, determine the mean and standard deviation of the
peak impact pressure.
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m Example (cont’d): Pressure of Ocean
Waves

E(p ) =1,  ~g[E()]=2.7(1.96)35)4.5) =3750.7 psf
and

AP ax
av

d pKV? pKV
=—o/| 27— [=2(2.7)—=2(2.7)1.96 (35 )4.5)=1,666.98
a2 e 2 seaskes)

d
ar(pmax ) ~ ( Zmryax
V=45

w6, =12,250,846.1 =1,500.3 psf

2
J Var(V) = (1,666.98)°(0.2x4.5) =2,250,846.1 psf”
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Functions of Random Variables

m Approximate Methods (Random Vector)
— First-order (approximate ) Mean

B(Y)=n, = g[E(X, ) E(X,)....B(X, )

— First-order (approximate) Variance

n n

VarlYl- o SN 6g(X)| ag(X)% COV(X,., XJ.)

=

L ariY 1oEl )
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.5‘

m Approximate Methods (Random Vector)
— First-order (approximate) Variance

If the Xi's are uncorrelated
(statistically independent), then

J Var(X ! )

Var ~ Z(

E(X;)
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.5‘

m Example 1:

Assume that the random variable Y can be
represented by the following relationship:

Y =XX;X)°

where X, X,, and Xj; are statistically
independent random variables with mean
values of 1.0, 1.5, and 0.8, respectively, and
corresponding standard deviations of 0.1, 0.2,
and 0.15, respectively. Find the first-order
mean and standard deviation of Y.
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m Example 1 (cont'd):
E(Y)=u, = g[E(X, . E(X, ). B(X, )]
=(1.0)(1.5)*(0.8)"* = 2.0887

i Functlons of Random Variables

Y =X X, X,"

1/3

ux2“X3

1/3

= =2y Hy My,

Ryl

oY | _ 6(X1X22X31/3)| _ (XZXW}
ox,|, . ax, | 27y
ov| _alxxixy) (x,x X1/3)
X, |, ox, | s
ov|  _alxxix) (1xx;
ox,,,  ox, | 3 x2°

2/3

BETS
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m Example 1 (cont’'d):

) ]2<u

2

oy
ox,

1/3
X2“X3

oY
ox,

D¢

2/3

3y

2 | o]

¢

i F unctions of Random Variables

05708y F = 43627

— (uy ] = 2001 .5X0.8) 2 | =7.7560

=0.7574
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Functions of Random Variables
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m Example 1 (cont'd):
Var(X,)=07 =(0.1) =0.01
Var(X,)=0}, =(0.2) =0.04
Var(X;)=0}, =(0.15)" =0.0225

Var(Y):ci, zi[a‘gg{) ( )] Var(X,)
7 O P £~ I RN (5
() Pt B vt vt

~(4.3627)0.01)+7.7560(0.04) +0.7574(0.0225) = 0.3709

.0, =+/0.3709 =0.609

-

sy

K
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m Example 2:

The stress F in a beam subjected to an external
bending moment M is
oM
1

where y is the distance from the neutral axis of
the cross section of the beam to the point
where the stress is calculated, and / = is the
centriodal moment of inertia of the cross
section. Assume that M and / are random
variables with means p,, and p,, respectively,
and variances o), and G, respectively.
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m Example 2(cont’d):
Determine the mean and variance of F based

on first-order approximation.

_ By
F
K,
of My
or| _ 1 _m _y
(’ﬁMH oM I Y
My,
of My
oF| _ \ I ( Myj MY
= =l =T
ol . ol I . T
Mo,
s24%%.  CHAPTER 11b. MONTE CARLO SIMULATION Slide No. 69

g~ Functions of Random Variables

m Example 2(cont’d):

Var( )=0; zg[a‘gﬁf) ( J Var(Xl)
[oelr) Y ooF) )
~[ gM " Var(M)Jr[ g@[ E(XJ Var(])
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g~ Multivariable Simulation

— Simulation can be used to study the
probabilistic characteristics of a function of
random variables.

— It can provides information about the
distributions of random variables that is
beyond the ability of theory.

— Theoretical relationships are often based
on restrictive assumptions, such as normal
distributions, that may not be valid for a
given problem.
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“Multivariable Simulation

m Stress at Extreme Fibers of a Beam

— The stress at the extreme fibers of steel
beam is given by
Mc

o=—o
I

— To estimate the mean and standard
deviation of o, we can use the first-order
approximation as discussed previously,
regardless of the distribution types of the
basic random variables ¢ and /.
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g~ Multivariable Simulation

m Stress at Extreme Fibers of a Beam

— Simulation can also be used to study
the probabilistic characteristics of o,
such as the mean and standard
deviation.

—However, the distribution types of the
basic random variables ¢ and / are
required.
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Multivariable Simulation

Lipcg o

m Stress at Extreme Fibers of a Beam

Ragdom Mean Star}dgrd Distribution
Variable Deviation Type

c 10 0.5 Normal

M 3000 900 Lognormal

1 1000 80 Normal
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Multlvarlable Simulation

m Stress at Extreme Fibers of a Beam

— First-order Approximate mean and standard deviation of M
_ Mc _3000(10)

=t =TT 3
I 1000
2
Ool _el _ 10 o1 [0 | Z0.0001
M|y Iy 1000 oM |y
2
o] _ M| _3000_, (do| | _g
oclg  I'ly 1000 | éc|y
2
oo _ Mc\ 3000(10)__ 7 951 | 0.0009
aly Il (1000) T,

Var(c)=(0.0001)900)" +9(0.5) +0.0009(80)° =89.01
Standard Deviation (6 ) =+/89.01 =9.43
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~ Multivariable Simulation

m Stress at Extreme Fibers of a Beam

» Simulation result for the mean and standard deviation of M
For 1000 simulation cycles,

Mean of 6 =30.15
Standard Deviation of 6 =9.67

# Cycles ui u2 u3 M c ) c

0.902062| 0.735778] 0.290168| 4200.533| 10.31519] 955.7684| 45.33453)
0.94779] 0.350819] 0.607922] 4628.371] 9.808445] 1021.913| 44.42368
0.458328| 0.615189| 0.984024| 2786.548| 10.14643[ 1171.601| 24.13239
0.450338] 0.312857| 0.78368] 2770.104] 9.756117] 1062.775| 25.42915
0.978812| 0.734305| 0.822165| 5214.236| 10.31294[ 1073.892| 50.07405

QDW=

1000] 0.708552) 0.253279| 0.665872| 3376.147| 9.667897( 1034.283] 31.55831
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m Stress at Extreme Fibers of a Beam

— Comparison Between Approximate Method
and Simulation

_ Mc
I

o Approximation | Simulation

Mean of ¢ 30.00 30.15

Standard Deviation of & 9.43 9.67




