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Reliabilitx of the Regression

Equation

R
e

m Criteria to be assessed:
— Correlation coefficient.
— The standard error of estimate.
— The F statistics for the analysis of Variance

— The rationality of the coefficients and the
relative importance of the predictor variable.

— The degree to which the underlying
assumptions of the regression model are
met.
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Reliabilitx of the Regression

Equation

m Correlation Coefficient

» The correlation coefficient R is an index of the
degree of linear association between two
random variables.

» The magnitude of R indicates whether the
regression provides accurate predictions of the
criterion variable.

» The square of the correlation coefficient R2
equals the percentage of the variance in the
criterion variable that is explained by the
predictor variable.
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ReliabilitX of the Regression

Equation

m Correlation Coefficient
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Reliabilitx of the Regression
Equation
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m Standard Error of Estimate

— In absence of additional information, the
mean is the best estimate of the criterion
variable.

— The standard deviation Sy of Yis an
indication of the accuracy of the prediction.

— If Yis related to one or more predictor
variables, the error of prediction is reduced
from Sy to the standard error of estimate
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% CHAPTER 10. USING DATA Slide No. 82
fh@f‘ . . R ENCE 627 ©Assakkafl
|~ Reliability of the Regression
Equation

m Standard Error of Estimate

— The standard error of estimate equals the
standard deviation of the errors

| R
Se=\/—2(y,-—yi)2
Vst

where

v=n—-p-1
n = number of sample points

p =number of predictor variables
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i~ Reliability of the Regression
Equation

m Standard Error of Estimate

* In terms of separation of variation, the standard
error of estimate equals the square root of the
ratio of the unexplained variation (UV).

* Itis important to know that S, is based on (n —
p —1) degrees of freedom, while S, is based on
(n— 1) degrees of freedom.

« If S, = Sy, the regression is not good

. If S, << Sy, the regression has improved the
prediction
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i~ Reliability of the Regression
Equation

m Standard Error of Estimate

TV=EV+UV
TV
Sv=171 =
i S?=S; 1-R’
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Reliabilitz of the Regression

Equation
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m Standard Error of Estimate

— Relationships between S_ and S,
S, =S,V1-R? (approximate formula)

S =\/( i 1jS;(l-—Rz) (exact formula)

547 _CHAPTER 10. USING DATA Slide No. 86
Frtpig

‘ Multigle Regression Analzsis

— Multiple regression are used to improve the
accuracy of predictions if the accuracy
from a bivariate regression is still not
sufficient for the design problem.

— Several predictor variables may provide
sufficient prediction accuracy.

— One reason to use multivariate models
rather than a bivariate model is to reduce
the standard error of estimate.
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MultiEle Regression Anallsis

d
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— The same least-squares objective function
is used to calibrate the regression
coefficient.

— Bivariate correlation are still computed.

— The major difference between multivariate
and bivariate analyses is the necessity to
account for interdependence (correlation)
of the predictor variables.
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Multigle Regression Analzsis

\
g

m Correlation Matrix

— After graphical analysis, the bivaraite
correlation coefficients should be
computed for each pair of variables; this
includes

1. The correlation between the criterion variable and
each predictor variable.

2. The Correlation between each pair of predictor
variables.
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Multlgle Regressmn Analzms
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m Correlation Matrix

X X, X; .. X, Y

X, L R onyo hy TNy

X, 1y o n, 1y

X, 1 o, ny

1

X » 1 Ty

Y 1
ﬁ‘ " CHAPTER 10. USING DATA Slide No. 90
' 2@ ENCE 627 ©Assakkaf

Multlgle Regressmn Analzsm

m Properties of Correlation Matrix

— The matrix includes p predictor variables
X, 1=1, 2, ...,p) and the criterion variable
Y.

— The matrix is symmetric, that is, r; = ;.

— The elements in the principal diagonal
equal 1.0.

— The matrixis (p+ 1) x (p + 1).
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"""“":'Multigle Regression Analysis
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m Example: Evaporation Data

* Correlation Matrix for Evaporation Data

X, X, X, X, Y
X, : temperature (" F) 1.000 -0.219 0.578 0.821  0.581
X, : wind speed (mi/day) 1.000 -0.261 -0.304 -0.140
X, :radiation 1.000  0.754  0.578
X, : vapor pressure deficit 1.000  0.635
Y : pan evaporation (inches 1.000
%‘;’ CHAPTER 10. USING DATA EN?;*:: g:’iz‘

a” Multiple Regression Analysis

m Calibration of the Multiple Linear Model

Y=b,+b X, +b,X, +...+b X,

— The Objective Functj 2
F = mane —mlnz b, +Zb X — y,j
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Multlgle Regressmn Analzms
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m Example: Multiple Regression

— Consider the case where p = 2, thus

Y =b,+b X, +b,X,

F= rninZn:ei2 = minznl(bO +bx, +b,x,, _yi)z

i=1 i=1
—The resulting derivatives are

GZe

ab

o

—22 by +byx;, +b,x,, — v, N1)=0
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Multlgle Regressmn Analzsm

m Example (cont’d): Multiple Regression

DI
61) —2;b+bx +byx, —y,)x,)=0
82@2

L=2ib +bx, +b,x,, — v, Nx,)=0
0b, p

The following set of normal equations can
be obtained:
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Multigle Regression Anallsis

m Example (cont'd): Multiple Regression
”b0+bl§xil+b2§xi2 :,Z::yi
b°§x” +bliz;:xfl +b2,z;:x”x[2 = é:xilyi
DTN SR 0 )

The solution of the three simultaneous
equations yields values for by, b,, and b,
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Multigle Regression Analzsis

m Example:

The following table provides values for the
criterion variable Y and two predictor
variables X, and X,. The sample consists
of 6 observations. Find the partial
regression coefficients b,, b,, and b,.
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Multiple Regression Analysis

;@;’ CHAPTER 10. USING DATA Slide No. 97

m Example (cont’d):

Y X, X, X XX, XY @ x XY
2 1 2 1 2 2 4 4
2 2 3 4 6 4 9 6
3 2 1 4 2 6 1 3
3 5 5 25 25 15 25 15
5 4 6 16 24 20 36 30
6 5 4 25 20 30 16 24
z 21 19 21 75 79 77 91 82
%‘;’ CHAPTER 10. USING DATA %

Multiple Regression Analysis

m Example (cont'd):

— Using Excel to estimate regression

coefficients
Regression Statistics
Multiple R 0.742867
R Square 0.551852
Adjusted R Sque 0.253086
Standard Error  1.420094
Observations 6
ANOVA
df SS MS F ignificance F

Regression 2 7.45 3.725 1.847107 0.300008
Residual 3 6.05 2.016667
Total 5 13.5

Coef?/'cients?\andard Ern__t Stat P-value _Lower 95% Upper 95%.ower 95.0%Jpper 95.0%
Intercept ( 1.3 )1.378249 0.943226 0.415151 -3.086207 5.686207 -3.086207 5.686207

X Variable 1 0.75 |0.584408 1.283351 0.289522 -1.109848 2.609848 -1.109848 2.609848
X Variable 2 -0.05 /0.538042 -0.09293 0.931818 -1.762292 1.662292 -1.762292 1.662292
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m Example (cont'd):

n n n
nb, +blzxil +bzzxiz = Z)’i
i=1 i=1 i=1
n n n n
2 _
b, Z X, +b Z x,+b, inlxiz = Z X
i=1 in1 i=1 i=1
n n n n
2 _
b, Z X, +h Z XX, 1D, Z Xip = Z Xin Vi
i=1 i=1 i=1 i=1
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Multlgle Regressmn Anallsm

195, +75b, +79b, =77
21b, +79b, +91b, =82
6b, +19b, +21b, =21

Y =1.30+0.75X, —0.05.X,
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.' Multlgle Regressmn Analzsm

m Example (cont'd):

— Using Excel to estimate regression
coefficients

Regression Statistics

Multiple R 0.742867318
R Square 0.551851852
Adjusted R Sque  0.25308642
Standard Error 1.420093894
Observations 6
ANOVA
df SS MS F Significance F

Regression 2 7.45 3.725 1.847107 0.300007705
Residual 3 6.05 2.016667
Total 5 13.5

Coefﬁc:}énts Standard Error t Stat P-value  Lower 95% Upper 95%.ower 95.0%
Intercept 1.3 1.37824885 0.943226 0.415151 -3.086207075 5.686207 -3.086207
X Variable 1 0.75 | 0.584407613 1.283351 0.289522 -1.109847593 2.609848 -1.109848
X Variable 2 -0.05 0.53804205 -0.09293 0.931818 -1.76229154 1.662292 -1.762292
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Regressmn Analzms of Nonlinear
Models

m Advantages of Linear Models

— Simple

— Easily applied

— Statistical reliability is easily assessed
m Disadvantages of Linear Models

— May be rejected because of theoretical
considerations or empirical evidence.
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Regressmn Anal;sm of Nonlinear
Models

m Common Nonlinear Alternatives
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— Bivariate

* Polynomial

Y =by+bX+b,X°+..+b X"
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Regressmn Analzms of Nonlinear
Models

m Common Nonlinear Alternatives

— Multivariate
* Polynomial

Y =b,+bX, +b,X, +b X +bX?+b X X,
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* Power

- b
Y =b X" X2, X

;’“ ¢ CHAPTER 10. USING DATA Slide No. 104
Wi ENCE 627 OAssakkaf |

Regressmn Anal;sm of Nonlinear
Models

m Calibration of Polynomial Models

— The power and polynomial models are
nonlinear forms that can transformed in a
way that it is possible to use the principle
of least squares.

— Although the transformation to a linear
structure is desirable, it has important
consequences in terms of assessing the
goodness of fit.
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Regressmn Analzms of Nonlinear
Models

m Calibration of Polynomial Models
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Y=by+bX+b,X*+. .+b X"

W.=X" fori=12,..,p

— Let 1

Y = by +bW,+b,W, +..+b W,
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Regressmn Anal;sm of Nonlinear
Models

m Fitting a Power Model
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Y = b, X"
Let 0
Z:Inf, c=1Inb,, and W =In X

Then, the following bivariate model can be obtained :

Z=c+le
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s The Regression Approach

Example: E(Sales\ Ad., Price, Compt. Price) A CDE o
=2000 + 14.8(Ads.) —500(Price) + ForF GHRGIT

500(Compt. Price) i (e

= 2000 + 14.8(40) —500(97.95) + 500(94.99) sales |

=1112($1000s). example. 0

Conditior!al CDFs 1.0 Advertising = $40,000
for sales in two Price = $97.95

scenarios. Competition Price 7$94.99

\Advertising = $70,000
1Price = $93.95
:Competition Price =($98.99
1

1 i
$1,112,000 $5,556,000
Sales

Our two assumptions-a linear expression for conditional expected value
and the constant shape for the conditional distribution-take us quite a long

way toward being able to use data to study relationships among variables.
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i~ Estimation: The Basics

m \We assume that we know the g
coefficients and the distribution of the
errors.

m \WWe may be able to make subjective
judgments of these quantities, but if
data are available, we may want to use
that information in a systematic way to
estimate the f's and to construct a data-
based distribution of errors.




S9%. _CHAPTER 10. USING DATA Slide No. 109

5 ———
. ENCE 627 OAssakkaf

ﬁ‘ . . .
Estlmatlon:The Basics

m The linear-regression assumptions.

E(Y | X)) = f, + b X,

14,000

LN |
12,000
] - ] :-
10,000 = L8 "
- - ‘ m
A scatter plot 4 = = - -
L. 000 = =
of advertising L
versus sales. + - " o= =
6,000
[ ]
4,000 300 400 500 600 700

Advertising ($1,000s)
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“Estimation: The Basics

m \We use our data to estimate £, and g,.

m Estimating 4, and £, amounts to finding
a line that passes through the cloud of
points in the scatter plot.

m No single line can pass precisely
through all of the points at once, but we
would like to find one that in some
sense is the “best fitting” line.

m There are many reasonable estimates
for 2, and g,.
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stimation:The Basics

Two possible lines relating expected sales and advertising.

E(Y | X) = 3500+ 25(X)

14,000 g
12,000
10,000

8,000

6,000 |
E(Y | X) = 1900+ 15(X)

4,000 ‘ | |

T T T 1
300 400 500 600 700

Advertising ($1,000s)
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si” Calculating Residuals

We will choose the
line that minimizes
the sum of the
squared vertical
distances between the
line and each point.

How will we choose the
best-fitting line through
the data points?
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g~ Calculating Residuals

10,800 T

e, =10,600-10350 B A(554, 10,600)
10,600 T 1 — |
=310 e

Calculating | (400 +
,

residuals E(Y|X) =—3500 +25X Residuals (e))

10,200 T
.7 e, =9917-10,175

10,000 2

B(547, 9917) l =-258
9,800 t i t 1
540 545 550 555 560
Advertising ($1,000s)
¢ =Y, —(by+hx;)
n
SSE = X [y, - (b + b,x,)]°
i =1
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g

Calculating Residuals

m How can we use the data to construct a
model of the distribution of errors?

— For every data point we have a residual,
which can be thought of as an estimate of
the error associated with that particular
point.

— The distribution of the residuals should be
a good approximation to the distribution of
the errors.
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g~ Calculating Residuals

— The CDF can be used to make probability
statements about the errors. We can also
use the CDF to construct a discrete
approximation.
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— The CDF can also be used as a basis for
representing the uncertainty.

— Typically in regression analysis, a normal
distribution is fit to the residuals, but
virtually any continuous distribution that
makes sense for the situation could be
used.
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g~ Calculating Residuals
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m The residuals could be used as data in
Best Fit to find the best-fitting
distribution.

m With the coefficient estimates and the
distribution of errors, we have a
complete, if simplified, model of the
uncertainty.
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CDF and Histogram of Residuals

A M.
gz

P(Residual < x) Frequency
100 m=============
1
1 1
080 - - — — - — |
1 1
1 1
0.60 : X
———————— I I
0.40 - (I ]
1 1 1
_____ 1 1 !
0.20 [ 1 1 1
1 1 1 1
1 1 1 1
0.00 | | | L ]
‘ ‘ ‘ ‘ -4500 -3000 1500 0 1500 3000
-4000 2000 0 2000 4000 _
X ($1000s) Residual ($1000s)
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Approximation for Error
Distribution
Error
-$3,200,000 (0.185)
Extended Pearson- 0 (0.630)
Tukey approximation
for error distribution.

-$3,200,000  (0.185)
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Regression Analeis and Modeling:

Some Do’s and Don’ts

m  We have seen a number of approaches to
creating uncertainty models:

1. Subjective assessment. The use of theoretical
distributions.

2. Statistical model and analysis, when based on
an appropriate data set of adequate size, is very
persuasive. The drawback: Data collection can
take time and resources and may not always be
feasible. In such cases, an analyst might be
better off relying on theoretical distributions and
expert subjective judgments.
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Regression Anal;sis and Modeling:

Some Do’s and Don’ts

3. Data. The use of data can be very
powerful.

tira v

— Creating an uncertainty model with
regression can be quite powerful.
Some important limitations:

1. The data set must have “adequate”
number of observations. A conservative
rule of thumb would be to have at least
10 observations for each explanatory
variable and never less than 30
observations total.
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Regression Analeis and Modeling:

Some Do’s and Don’ts

2. Even with an adequate data set and a
satisfactory model and analysis, there
remains an important limitation. Our
regression model is a linear combination
of the explanatory variables. Our model
may be a terrific approximation of the
relationship for the variables in the
neighborhood of the data that you have.
But if you try to predict the response
variable outside of the range of your data,
you may find that your model performs
poorly.
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Regression Anal;sis and Modeling:

Some Do’s and Don’ts

Etpg

3. You may try to predict the response
variable for a combination of the
explanatory variables that is poorly
represented in the data. Even though the
value of each explanatory variable falls
within its own range, the combination for
which you want to create a forecast could
be very unusual
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s" Regression Analysis and Modeling:

Some Do’s and Don’ts
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m Note:

— Although there is no simple way to avoid
this problem and to ensure that the point
for which you wish to predict the response
variable lies within the data cloud in each
of the scatter plots.
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Summeu;y
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m \We have seen some ways in which data
can be used in the development of
probabilities and probability distributions
for decision analysis.

m The basis of constructing histograms
and empirically based CDFs.

m Use of data to estimate parameters for
theoretical distributions.




