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Introduction

Source for information about
probabilities and historical data
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Introduction

So far we have seen two ways to 
calculate probability for decision 
models.
– Subjective probabilities (chapter 8)

– Theoretical probability models (chapter 9)

In chapter 9, given a particular 
probability model, we had just assumed 
certain parameter values for the any 
particular distribution.
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Introduction

Example:
– Poisson model for tornadoes occur in a 

particular area an average of two times a 
year.  In this case, λ = 2/year.

– The parameters un and αn in the example 
of the Extreme Value Distribution, Type I 
for maximum wind velocity Vn were 
assumed as
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Introduction

Now we will learn to calibrate models to 
data finding the best parameters
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Using Data to Construct Probability 
Distributions

Imagine that you are in charge of a 
manufacturing plant, and you are trying 
to develop a maintenance policy for 
your machines.

You may collect the following data over 
260 days:

11 daysTwo failures
32 daysOne failure

217 daysNo failures
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Using Data to Construct Probability 
Distributions

These data lead to the following relative 
frequencies, which could be used as 
estimates in your analysis: Data 
collected: out of 260 days (= 52 weeks 
× 5 days/week):

0.042 = 11/260Two failures
1.000

0.123 = 32/260One failure
0.835 = 217/260No failures

Basically one year’s worth 
of working days

Basically one year’s worth 
of working days
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Using Data to Construct Probability 
Distributions

The only serious consideration to keep 
in mind is that you should have enough 
data to make a reliable estimate of the 
probabilities.
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Using Data to Construct Probability 
Distributions

Relative frequency histogram for 
machine failure:

32/260
11/260
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Decision-tree Representation of 
Uncertainty Regarding Machine Failures

Note:
– The data requirements depend on the 

particular problem, but the minimum should 
be approximately five observations in the 
least likely category.  The other categories, 
of course, will have more observations.

...

...

...

No Failures
(0.835)
One Failure
(0.123)
Two Failures
(0.042)
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– Keep in mind that your probability 
estimates are just that - estimates.  

– Ask yourself whether the probabilities 
estimated on the basis of the data truly 
reflect the uncertainty that you face.

– If you are not satisfied with the 
representation based on the data, you may 
need to model your uncertainty using 
subjective assessment methods.  In 
particular, this might be the case if you 
think that the past may not indicate what 
the future holds.

Decision-tree Representation of 
Uncertainty Regarding Machine Failures
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Using Data to Construct Probability 
Distributions: Empirical CDFs

Notes:
– You should have enough data to make the 

%’s reliable.

– Also, you should ask the question whether 
the data was collected over a period in 
which it was representative?

In some settings one year may 
not be enough, in other settings 
it may be ok.

In some settings one year may 
not be enough, in other settings 
it may be ok.
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Slightly more sophisticated approach
– Empirical CDFs

• Halfway House Example:
– Ease transition from prison life to normal civilian life.

– Increase chances to re-integrate into society

Using Data to Construct Probability 
Distributions: Empirical CDFs
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Example: Halfway House
– Yearly per-bed rental costs (in $), let C be 

the random variable representing costs; 35 
halfway houses randomly sampled.

Using Data to Construct Probability 
Distributions: Empirical CDFs

C = 1 52 8 205 15 303 22 400 29 643
2 76 9 250 16 313 23 402 30 693
3 100 10 257 17 317 24 408 31 732
4 136 11 264 18 325 25 417 32 749
5 137 12 280 19 345 26 422 33 750
6 186 13 282 20 373 27 472 34 791
7 196 14 283 21 384 28 480 35 891

18 values ≤ 325
18 values ≥ 325

P(C ≤ 325) = P(C ≤ 326) = …= P(C ≤ 344.99) = 18/35 =0.514

Relative 
Cumulative 
Frequency

Relative 
Cumulative 
Frequency
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Example (cont’d): Halfway House
Question: Which value to be used for the 

0.514 fractile?

Answer: One way is to take a compromise: 
(325+345)/2 = 335, do the same things for 
all points.

Using Data to Construct Probability 
Distributions: Empirical CDFs
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Example (cont’d): Halfway House

Using Data to Construct Probability 
Distributions: Empirical CDFs

14/35 = 0.400

15/35 = 0.429

16/35 = 0.457

17/35 = 0.486

18/35 = 0.514

19/35 = 0.543

Cumulative
Probability

303 313 317 325 335 345

Yearly Bed-Rental Cost

½ way point½ way point
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Obs.
No. Cost xm

Cumulative
Probability

Obs.
No. Cost xm

Cumulative
Probability

1 52 64.0 0.029 19 345 369.0 0.543
2 76 88.0 0.057 20 373 378.5 0.571
3 100 118.0 0.086 21 384 392.0 0.600
4 136 136.5 0.114 22 400 401.0 0.629
5 137 161.5 0.143 23 402 405.0 0.657
6 186 191.0 0.171 24 408 412.5 0.686
7 196 200.5 0.200 25 417 419.5 0.714
8 205 227.5 0.229 26 422 447.0 0.743
9 250 253.5 0.257 27 472 476.0 0.771

10 257 260.5 0.286 28 480 561.5 0.800
11 264 272.0 0.314 29 643 668.0 0.829
12 280 281.0 0.343 30 693 712.5 0.857
13 282 282.5 0.371 31 732 740.5 0.886
14 283 293.0 0.400 32 749 749.5 0.914
15 303 308.0 0.429 33 750 770.5 0.943
16 313 315.0 0.437 34 791 841.0 0.971
17 317 321.0 0.486 35 891
18 325 335.0 0.514

Using Data to Construct Probability 
Distributions: Empirical CDFs

Example (cont’d): Halfway House
Estimated cumulative probabilities for the halfway-house data
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Example (cont’d): Halfway House

Using Data to Construct Probability 
Distributions: Empirical CDFs

Obs.
No. Cost xm

Cumulative
Probability

Obs.
No. Cost xm

Cumulative
Probability

1 52 64.0 0.029 19 345 369.0 0.543
2 76 88.0 0.057 20 373 378.5 0.571
3 100 118.0 0.086 21 384 392.0 0.600
4 136 136.5 0.114 22 400 401.0 0.629
5 137 161.5 0.143 23 402 405.0 0.657
6 186 191.0 0.171 24 408 412.5 0.686
7 196 200.5 0.200 25 417 419.5 0.714
8 205 227.5 0.229 26 422 447.0 0.743
9 250 253.5 0.257 27 472 476.0 0.771

10 257 260.5 0.286 28 480 561.5 0.800
11 264 272.0 0.314 29 643 668.0 0.829
12 280 281.0 0.343 30 693 712.5 0.857
13 282 282.5 0.371 31 732 740.5 0.886
14 283 293.0 0.400 32 749 749.5 0.914
15 303 308.0 0.429 33 750 770.5 0.943
16 313 315.0 0.437 34 791 841.0 0.971
17 317 321.0 0.486 35 891
18 325 335.0 0.514

n: total points
(n=35 here)

m: typical point

n: total points
(n=35 here)

m: typical point

½ way point
(52+76)/2=64

etc.

½ way point
(52+76)/2=64

etc.

(303+313)/2=308(303+313)/2=308
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Example (cont’d): Halfway House
The value for xm is the mth one.

∴ it should have cumulative probability of 
m/n.

Using Data to Construct Probability 
Distributions: Empirical CDFs

Example: P(C ≤ 64) =1/35 ≅ 0.029
P(C ≤ 308) =15/35 ≅ 0.429
P(C ≤ 335) =18/35 ≅ 0.514

Do for all 35 points and then smoothly extrapolate for the tails

Example: P(C ≤ 64) =1/35 ≅ 0.029
P(C ≤ 308) =15/35 ≅ 0.429
P(C ≤ 335) =18/35 ≅ 0.514

Do for all 35 points and then smoothly extrapolate for the tails
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Example (cont’d): Halfway House
Cumulative
Probability

1.00

0.75

0.50

0.25

0.00
0 100 200 300 400 500 600 700 800 900

Yearly Bed-Rental Cost

240 450
extrapolated

extrapolated

can automate easily

Using Data to Construct Probability 
Distributions: Empirical CDFs

We can say that there is:
- 50% chance that the yearly bed-rental cost will fall between $240 and $450.
- 25% chance that the cost would fall below $240.
- 25% chance that it would fall above $450.

We can say that there is:
- 50% chance that the yearly bed-rental cost will fall between $240 and $450.
- 25% chance that the cost would fall below $240.
- 25% chance that it would fall above $450.

(e.g. RiskView)(e.g. RiskView)
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Example (cont’d): Halfway House
– Alternatively, could use a discrete 

approximation e.g. three-point Pearson-
Tukey method 

Using Data to Construct Probability 
Distributions: Empirical CDFs

0.05fractile 85 (0.185)

median 328 (0.63)

0.95fractile 775 (0.185)
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Using Data to Fit Theoretical 
Probability Models

Method A: One way to deal with data is 
simply to fit a theoretical distribution to 
it.

Step 1: Decide what kind of distribution is 
appropriate (binomial, Poisson, normal, 
and so on)

• What distribution is best? Need to understand 
the setting

– Defects maybe Poisson

– Value in [0,1] maybe beta

– Normal? Need symmetry as well as other things
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Step 2: Choose the values of the 
distribution parameters

• Having chosen the distribution, need to 
calibrate, i.e., choose the values for the 
parameters. Bernoulli (P), Binomial (n, p), 
Poisson ( λ), etc.

• Easy way (probably adequate in a number of 
settings.

• Take sample mean and sample variance:

Using Data to Fit Theoretical 
Probability Models

Statistical reasons 
why not n

Statistical reasons 
why not n

∑
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Example: Calculate the sample mean 
(x) and sample variance (S2) for the 35 
halfway house observations 

Using Data to Fit Theoretical 
Probability Models

We might choose a normal 
distribution 
with mean µ = 380.4 and 
standard deviation
σ = 217.6 to represent the 
distribution of the yearly 
bed-rental costs.
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Using Data to Fit Theoretical 
Probability Models

Method B: Fit a theoretical distribution 
using fractiles.  That is, find a theoretical 
distribution whose fractiles match as 
well as possible with the fractiles of the 
empirical data.  In this case we would 
be fitting a theoretical distribution to a 
data-base distribution.
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Using Data to Fit Theoretical 
Probability Models

Method C: For most initial attempts to 
model uncertainty in a decision analysis, it 
may be adequate to use the sample mean 
and variance as estimates of the mean 
and variance of the theoretical distribution 
and to establish parameter values in this 
way.  Refinement of the probability model 
may require more careful judgment about 
the kind of distribution as well as more 
care in fitting the parameters.
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Testing the Validity of Assumed 
Distribution

When a theoretical distribution has been 
assumed, the validity of the assumed 
distribution may be verified or disproved 
statistically by goodness-of-fit tests.

Two tests are commonly used:
– The Chi-square

– The Kolmogorov-Smirnov test
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Testing the Validity of Assumed 
Distribution

Chi-square Test for Goodness of Fit
– Consider a sample of O observed values of 

a random variable.

– The chi-square goodness-of-fit test 
compares the observed frequencies O1, 
O2,…, Ok of k values (k intervals) of the 
variate with the corresponding frequencies 
E1, E2,…,Ek from an assumed or 
theoretical distribution.
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Testing the Validity of Assumed 
Distribution

Chi-square Test for Goodness of Fit
– The basis for the appraising the goodness 

of the comparison is given by the following 
test statistic:

Where χ2 is the computed value of a random variable 
having a chi-square distribution with k – 1 degrees of 
freedom; Oi and Ei are the observed and expected 
frequencies in cell (or interval) i, and k is the number 
of discrete cells (intervals) into which data were 
separated.

( )∑
=

−
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Testing the Validity of Assumed 
Distribution

Chi-square Test for Goodness of Fit
– Degrees of Freedom

• If the mean and standard deviation of the 
sample are needed to compute the expected 
frequencies, then two additional degrees of 
freedom are subtracted (i.e., k – 3).

• If the mean and standard deviation are 
obtained from past experience or other 
sources, then the number of degrees of 
freedom for the test statistic remains k – 1.
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Testing the Validity of Assumed 
Distribution

Chi-square Test for Goodness of Fit
– If the assumed distribution yields

1. The assumed theoretical distribution is an 
acceptable model if χ2 < χ2

α,ν

2. Otherwise, it is not acceptable at the α
significance level.
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Testing the Validity of Assumed 
Distribution

Example: Rainstorms
Severe rainstorms have been recorded at a 

given station over a period of 66 years.  During 
this period, there were 20 years without severe 
rainstorms; and 23, 15, 6, and 2 years, 
respectively, with 1, 2, 3, and 4 rainstorms 
annually.  Judging from the shape of the 
histogram, a Poisson distribution seems an 
appropriate model for the annual number of 
rainstorms.  Is this claim valid? Use a 
significance level of 5%.
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Testing the Validity of Assumed 
Distribution

Example (cont’d): Rainstorms
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Example (cont’d): Rainstorms

0.068566.0099∑

0.00130.01007.908>3

0.03530.504114.29152

0.03170.756923.87231

0.00020.003619.94200

Theoretical 
frequency, Ei

Observed 
frequency, Oi

No. of storms 
at station per 

year
( )2

ii EO −
( )

i

ii

E
EO 2−

Testing the Validity of Assumed 
Distribution
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Example (cont’d): Rainstorms
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Testing the Validity of Assumed 
Distribution
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Software for Fitting Distributions:  
BestFit and @RISK

Excellent software exists to help a 
decision analysis fit theoretical 
distributions to data.

BestFit, a program published by 
Palisade Software.  Providing a way for 
an analyst to fit theoretical distributions 
to subjective assessments elicited from 
experts.
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Fitting distributions to the half-way 
house data with BestFit.

Read procedure of BestFit with @RISK 
packages in book pages 405 – 411.

Software for Fitting Distributions:  
BestFit and @RISK
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Summary

We have seen some ways in which data 
can be used in the development of 
probabilities and probability distributions 
for decision analysis. 

The basis of constructing histograms 
and empirically based CDFs. 

Use of data to estimate parameters for 
theoretical distributions.
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Using Data Using Data 
toto

Model RelationshipsModel Relationships

Using Data to Model Relationships
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Using Data to Model Relationships

We use data to try to understand the 
relationships that exist among different 
phenomena in our world.

Examples:
– Causes of Cancer 

– Sales Revenue

– Economic Conditions

– Natural Processes
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Using Data to Model Relationships
Note:

1. The motivation for studying relationships among 
phenomena that we observe is to gain some 
degree of control over our world.  In many cases 
we hope to make changes in those areas where 
we have direct control in order to accomplish a 
change in another area.

2. We will focus on the problem of using data on a 
number of auxiliary variables (which we will 
denote as X1, …, Xk) to determine the distribution 
of some other variable of interest (Y) that is 
related to the x’s.
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Using Data to Model Relationships

3. Y is sometimes called a response
variable or dependent variable, because 
its probability distribution changes in 
response to changes in the X’s.

4. The X’s sometimes are called 
explanatory variables or independent
variables, because they can be used to 
help explain the changes in Y.
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Using Data to Model Relationships
– The use of data to understand relationships is 

not trivial.  Consider the influence diagrams.
• The brute force approach would require obtaining 

enough data to estimate the conditional distribution 
for the particular variable of interest (Y) for every 
possible combination of values for its conditioning 
or predecessor variables (X1 and X2).

• We would need to know what are feasible values 
for the decision variable (X1), and we would have to 
assess a distribution for the possible values for the 
uncertain variable (X2).

Note: We would require a lot of data, and even in simple problems this 
could be a tedious or infeasible task.
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Using Data to Model Relationships

X1 X2

Y

X1 X2

Y

X3

X4

An influence diagram for 
modeling relationship among 
uncertain quantities X1, X2, and Y.

An influence diagram relating two 
uncertain quantities and two 
decision variables to Y.

Example:
X2 Pearson-Tukey three-point 
approximation
X1 low, medium, high
Nine different conditional probability 
distributions for Y based on the 
possible scenarios.

Example:
X3 and X4 Three possible 
values
X1  and X2 Three point 
approximation
We would need to come up with 81 
conditional distributions 34 = 81
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The Regression Approach

One way to model the relationships 
between variables
– Determine the conditional expected value 

of Y given the X’s, E(Y | X1, . . . , Xk). 

– Consider the conditional probability 
distribution around that expected value.
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The Regression Approach

Correlation
– The study of the degree of linear 

interrelation between random variables is 
called correlation analysis.

– Correlation analysis provides a means of 
drawing inferences about the strength of 
the relationship between two or more 
variables.
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The Regression Approach

Correlation
– Correlation is a measure of the degree to 

which the values of these variables vary in 
a systematic manner.

– It provides a quantitative index of the 
degree to which one or more variables can 
be used to predict the values of another 
variable
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Correlation

Different degrees of 
correlation between 
variables X and Y .
– High degree of correlation 

in Fig. a and e.

– No correlation in Fig. c.

– The degree of correlation is 
moderate in Fig’s b and d.

– In Fig. b, exact change in Y
for change in X is difficult to 
predict.

– In Fig. f, very predictable 
trend, but poor correlation.
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The Regression Approach

Limitations of Correlation Analysis
– Correlation analysis does not provide an 

equation for predicting the value of a 
variable..

– Also, it does not indicate whether a 
relationship is causal, that is whether there 
is a cause-and-effect relationship between 
the variables.
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The Regression Approach
Correlation
– Example random variables having causal 

relationship and strong correlation:
– The cost of living and wages

– The volumes of rainfall and flood runoff

– Example random variables not having causal 
relationship and strong correlation:

– The crime rate and the sale of chewing gum last 
decade

– Annual population growth in 19th century France 
and annual cancer deaths rate in the U.S. in the 
20th century
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The Regression Approach

Correlation
Separation of Variation

TV = total variation

EV = explained variation

UV = unexplained variation

UVEVTV +=
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The Regression Approach
Correlation
– Separation of Variation: A Set of 

Observations on a Random Variable Y
UVEVTV += ( ) ( ) ( )∑∑∑
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The Regression Approach
Correlation

Separation of variation: (a) total variation; 
(b) explained variation; (c) unexplained 
variation.
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The Regression Approach

Need for Regression
– When dealing with two or more variables, 

the functional relationship between the 
variables is often of interest.

– However, if one or two variables (in two-
variable case) are random, there is no 
unique relationship between the values of 
the two variables.
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The Regression Approach

Need for Regression
– Given a value of one variable (the 

controlled or independent variable), there 
is a range of possible values of the other.

– Thus, a probabilistic description is 
required.
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The Regression Approach

Regression Analysis
Regression analysis is the probabilistic 
relationship between random variables 
when this relationship is described in terms 
of the mean and variance of one random 
variable as a function of the value of the 
other random variables.
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Optimization
– The process of deriving a relationship 

between a random variable and measured 
values of other variables is called 
“optimization” or model “calibration”

– The objective of optimization is to find the 
values of vectors of unknowns that 
provides the minimum or maximum value 
of some function.
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Correlation Versus Regression
– Correlation analysis provides a measure of 

goodness of fit.

– Regression analysis is a means of 
calibrating the unknown coefficients of a 
prediction equation.

– Correlation has its usefulness in model 
formulation and verification.
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Elements of Statistical Optimization
1. An objective function, which defines what is 

meant by the best fit.

2. A mathematical model, which is a n explicit 
function relating a criterion variable (i.e., Y) to 
vectors of unknowns and predictor (i.e., X) 
variable(s)

3. A matrix of measured data 
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Example: Evaporation
– In irrigation projects, it is necessary to 

provide estimates of evaporation.
– Evaporation can be a function of other 

variables such as air temperature, 
humidity, and air mass.

– If measurement of air temperature are 
available, a relationship or a model can be 
developed.

The Regression Approach
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Example (cont’d): Evaporation

b0 and b1 = the unknown coefficients

= the predicted value of E

T = air temperature

TE 10
ˆ ββ +=

Ê
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Example (cont’d): Evaporation
– If we are interested in daily evaporation 

rates, we may measure both the total 
evaporation for each day in a year and the 
corresponding mean daily temperature.

– An objective function should be established 
to evaluate the unknowns.

– Regression minimizes the sum of the 
squares of the differences between the 
predicted and measured values. 
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Regression Definitions
– The objective of regression is to evaluate 

the coefficients of an equation relating the 
criterion variable to one or more variables, 
which are called the predictor variables.

– The predictor variables are variables in 
which their variation is deemed to cause or 
agree with variation in criterion variable
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Linear Regression
– The conditional expected value of Y is 

linear in the X’s

– In symbols:

kkk XXXY|X βββ +++= ...),...,E( 1101

The β ’s are coefficients, and they serve the purpose of combining the X
values to obtain a conditional expected value for Y.
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Note:
1. It is important to remember that the 

equation defines a relationship between 
the explanatory variables and the 
expected Y.  The actual Y value will be 
above or below this expected value to 
some extend; this is where the 
uncertainty and the conditional probability 
distribution of Y come into play.
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2. The distribution around the conditional 
expected value has the same shape 
regardless of the particular X values

ε+= ),...,|(Eˆ
1 kXXYY

The conditional distribution (and the corresponding density) of Y, given 
the X’s, ahs the same shape as the distribution (or density) of the errors, 
but it is just shifted so that the distribution is centered on the expected 
value E(Y|X1, . . . , Xk)

CHAPTER 10. USING DATA Slide No. 67
ENCE 627 ©Assakkaf

The Regression Approach

Bivariate Model

Multivariate model

XY 10
ˆ ββ +=

kk XXXY ββββ ++++= ....ˆ
22110
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Principle of Least Squares
– The principle of least squares is the 

process of obtaining the best estimates of 
the coefficients (β0, β1,.., βk).

– This principle is referred to as the 
regression method.

– To express the principle of least squares, it 
is important to define the error e
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Principle of Least Squares
– Objective Function

( )

errorith  the
 of  valuemeasuredith   the

ˆ of  valuepredictedith  theˆ
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yyeF

The objective function for the principle of least squares is to minimize
the sum of the squares of the errors
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Procedure Solution for the Bivariate
model

The derivatives of the sum of the squares of the 
errors with respect to the unknowns b0 and b1
are as follows:

( ) ( )∑∑
==

−+=−=

+=

n

i
ii

n

i
ii yxbbyYF

XbbY
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2
10

1

2

10
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ˆ
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Dividing each equation by 2, separating the terms in the summation, and
rearranging yields the set of normal equations:
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Bivariate Model

XbbY 10
ˆ +=
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Example: Bivariate Model
Given the following pairs of observations, 
compute the regression coefficients for the 
bivariate (linear) model using the principle 
of least squares.

8.99.18.88.16.54.92.8Y

9.27.96.34.43.11.60.8X
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Example: Bivariate Model

0

1

2

3

4

5

6

7

8

9

10

0 2 4 6 8 10

X

Y



39

CHAPTER 10. USING DATA Slide No. 76
ENCE 627 ©Assakkaf

The Regression Approach

Example: Bivariate Model

x i y i
0.8 2.8 0.64 2.24
1.6 4.9 2.56 7.84
3.1 6.5 9.61 20.15
4.4 8.1 19.36 35.64
6.3 8.8 39.69 55.44
7.9 9.1 62.41 71.89
9.2 8.9 84.64 81.88

Σ 33.3 49.1 218.91 275.08

2
ix ii yx

( )( )

( ) ( )
68605.0

7
3.3391.218

1.493.33
7
108.275

1

1

22

11

2

111
1 =

−

−
=









−

−
=

∑∑

∑∑∑

==

===

n

i
i

n

i
i

n

i
i

n

i
i

n

i
ii

x
n

x

yx
n

yx
b

( ) ( )

3.75063  

3.33
7

68605.01.49
7
1   

1
1

1

1
0

=

−=

−= ∑∑
==

n

i
i

n

i
i x
n
by

n
b

CHAPTER 10. USING DATA Slide No. 77
ENCE 627 ©Assakkaf

The Regression Approach

Example: Bivariate Model
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