Solution to Homework Set \#5

ENCE 627 - Decision Analysis for Engineering - Fall 2003

Assigned T, 10/14 Due T, 10/21

Problem 1

Textbook (CR): 2.10
$\begin{aligned} . \mathrm{NPV}=\frac{-12000}{1.12} & +\frac{5000}{1.12^{2}}+\frac{5000}{1.12^{3}}+\frac{-2000}{1.12^{4}}+\frac{6000}{1.12^{5}}+\frac{6000}{1.12^{6}} \\ = & -10,714.29+3985.97+3558.90-1271.04+3404.56+3039.79\end{aligned}$
$=\$ 2003.90$
Using Excel's NPV function:
$=\mathrm{NPV}(0.12,-12000,5000,5000,-2000,6000,6000)$
$=\$ 2,003.90$
The internal rate of return (IRR) for this cash flow is approximately 19.2%.

Problem 2

A contractor is considering the following three alternatives:
A. Purchase a new microcomputer system for $\$ 5,017$. The system is expected to last for 6 years with salvage value of $\$ 1,000$.
B. Lease a new microcomputer system for $\$ 1,400$ per year, payable in advance. It should last 6 years.
C. Purchase a used microcomputer system for $\$ 2,720$. It is expected to last 3 years with essentially no salvage value.
(a) For a MARR of 12%, which alternative should be selected?
(b) For a MARR of 15%, which alternative should be selected?
(c) What is the rate of return (ROR) between alternative A and B?

Note: Assume equal replacement conditions for this problem

*** SOLUTION ***

(a) $i=12 \%$:
$\mathrm{NPW}_{\mathrm{A}}=-5,017+1,000\left(1 /[1.12]^{6}\right)=-4,510.37=\mathbf{-} \mathbf{\$ 4 , 5 1 0}$
$\mathrm{NPW}_{\mathrm{B}}=-1,400+1,400(\mathrm{P} / \mathrm{A}, 12,5)=-6,446.687=\mathbf{- \$ 6 , 4 5 0}$
$\mathrm{NPW}_{\mathrm{C}}=-2,720+2,720\left(1 /[1.12]^{3}\right)=-4,656.042=\mathbf{- \$ 4 , 6 6 0}$

Choose A

(b) $i=15 \%$:
$\mathrm{NPW}_{\mathrm{A}}=-5,017+1,000\left(1 /[1.15]^{6}\right)=-4,584.672=\mathbf{- \$ 4 , 5 8 0}$
$\mathrm{NPW}_{\mathrm{B}}=-1,400+1,400(\mathrm{P} / \mathrm{A}, 15,5)=-6,093.017=\mathbf{- \$ 6 , 0 9 0}$
$\mathrm{NPW}_{\mathrm{C}}=-2,720+2,720\left(1 /[1.15]^{3}\right)=-4,508.44=\mathbf{- \$ 4 , 5 1 0}$

Choose C

(c) $\mathrm{NPW}_{\mathrm{A}-\mathrm{B}}=-5,017+1,000\left(1 /(1+i)^{6}\right)+1400+1400(\mathrm{P} / \mathrm{A}, i, 5)=0$

By tial and error, $i=\mathbf{3 0 . 0 \%}$

Problem 3

Textbook (CR): 3.1
*** SOLUTION ***
Fundamental objectives are the essential reasons we care about a decision, whereas means objectives are things we care about because they help us achieve the fundamental objectives. In the automotive safety example, maximizing seat-belt use is a means objective because it helps to achieve the fundamental objectives of minimizing lives lost and injuries. We try to measure achievement of fundamental objectives because we want to know how a consequence "stacks up" in terms of the things we care about.

Separating means objectives from fundamental objectives is important in Chapter 3 if only to be sure that we are clear on the fundamental objectives, so that we know what to measure. In Chapter 6 we will see that the means-objectives network is fertile ground for creating new alternatives

Problem 4

Textbook (CR): 3.2
*** SOLUTION $* * *$
Answers will vary because different individuals have different objectives. Here is one possibility. (Means objectives are indicated by italics.)

Problem 5

Textbook (CR): 3.9
*** SOLUTION ***
The following answers are based on the interpretation that the suit will be ruined if it rains. They are a good first pass at the problem structure (but see below).

The Excel solution "Problem 3.9.xls" shows a realization of this problem assuming the cost of the suit is $\$ 200$, the cost of the inconvenience of carrying an umbrella when it is not raining is $\$ 20$, the probability of rain is 0.25 , and the weather forecaster is 90% accurate.

Note that the wording of the problem indicates that the suit may be ruined if it rains. For example, the degree of damage probably depends on the amount of rain that hits the suit, which is itself uncertain! The following diagrams capture this uncertainty.

