Solution to Homework Set #1

ENCE 627 – Decision Analysis for Engineering – Fall 2003

Assigned T, 9/9 Due T, 6/16

Problem 1

The following concrete strength data (in ksi) were collected using an ultrasonic nondestructive testing method at different locations of an existing structure:

3.5, 3.2, 3.1, 3.5, 3.6, 3.2, 3.4, 2.9, 4.1, 2.6, 3.3, 3.5, 3.9, 3.8, 3.7, 3.4, 3.6, 3.5, 3.5, 3.7, 3.6, 3.8, 3.2, 3.4, 4.2, 3.6, 3.1, 2.9, 2.5, 3.5, 3.4, 3.2, 3.7, 3.8, 3.4, 3.6, 3.5, 3.2, 3.6, and 3.8

- (a) Plot a histogram and a frequency diagram for concrete strength.
- (b) Determine the central tendency measures, i.e., the average value, median and mode.
- (c) Determine the dispersion measures, i.e., the variance, standard deviation and coefficient of variation.
 *** SOL UTION ***

SOLU	

Sorted Data:

2.5	3.2	3.5	3.7
2.6	3.3	3.5	3.7
2.9	3.4	3.5	3.7
2.9	3.4	3.5	3.8
3.1	3.4	3.6	3.8
3.1	3.4	3.6	3.8
3.2	3.4	3.6	3.8
3.2	3.5	3.6	3.9
3.2	3.5	3.6	4.1
3.2	3.5	3.6	4.2

(a) <u>Histogram and Frequency Diagrams:</u> $k = 1 + 3.3 \log_{10}(40) = 6.28 = 6$

(b) <u>Central Tendency Measures:</u>

Average (Mean)	3.45 ksi
Median	3.5 ksi
Mode	3.5 ksi

(c) **Dispersion Measures**:

Var	0.1241 ksi
St. Dev	0.3523 ksi
COV	0.1021 ksi

Problem 2

If the sample space $S = \{0, 1, 2, 3, 4, 5, 6, 7, 8, 9\}$ and $A = \{0, 2, 4, 6, 8\}$, $B = \{1, 3, 5, 7, 9\}$, $C = \{2, 3, 4, 5\}$, and $D = \{1, 6, 7\}$, list the elements of the sets corresponding to the following events:

- (a) $A \cup C$
- (b) $A \cap B$
- (c) \overline{C}
- (d) $(\overline{C} \cap D) \cup B$
- (e) $\overline{S \cap C}$

***** SOLUTION *****

a) $A \cup C$

$$A \cup C = \{0, 2, 3, 4, 5, 6, 8\}$$

b) $A \cap B$

 $A \cap B = \emptyset$ = empty set or impossible event

c) \overline{C}

$$\overline{C} = \{0,1,6,7,8,9\}$$

- d) $(\overline{C} \cap D) \cup B$ $(\overline{C} \cap D) \cup B = \{1,6,7\} \cup B = \{1,3,5,6,7,9\}$
- e) $\overline{S \cap C}$

$$\overline{S \cap C} = \overline{S} \cup \overline{C} = \emptyset \cup \overline{C} = \{0,1,6,7,8,9\}$$

Problem 3

Refer to the Venn diagram shown below for event *A* and *B* in the sample space *S*. Find each of the indicated probabilities.

(h) $P(A \cap B)$ and $P(\overline{A} \cap \overline{B})$ $P(A \cap B) = \frac{5}{35 + 5 + 20 + 40} = \frac{5}{100} = 0.05$ $P(\overline{A} \cap \overline{B}) = \frac{40}{35 + 5 + 20 + 40} = \frac{40}{100} = 0.4$ (i) $P(\overline{A} \cap B)$ and $P(A \cap \overline{B})$ $P(\overline{A} \cap B) = \frac{20}{100} = 0.20$ and $P(A \cap \overline{B}) = \frac{35}{100} = 0.35$ (j) $P(A \cup B)$ and $P(\overline{A \cup B})$ $P(A \cup B) = P(A) + P(B) - P(A \cap B) = 0.40 + 0.25 - 0.05 = 0.6$ $P(\overline{A \cup B}) = 1 - P(A \cup B) = 1 - 0.60 = 0.40$, Also, $P(\overline{A \cup B}) = P(\overline{A} \cap \overline{B}) = 0.4$

Problem 4

Textbook (CR): 7.4 **Solution:**

P(A or B) = P(A and B) + P(A and \overline{B}) + P(A and B) = 0.12 + 0.53 + 0.29 = 0.94

or
$$P(A \text{ or } B) = P(A) + P(B) - P(A \text{ and } B)$$

= 0.41 + 0.65 - 0.12 = 0.94

or P(A or B) = 1 - P(A and
$$\overline{B}) = 1 - 0.06 = 0.94$$

Problem 5

Textbook (CR): 7.15 Solution: P(offer) = 0.50 P(good interview | offer) = 0.95P(good interview | no offer) = 0.75

P(offer | good interview) = P(offer | good)

 $=\frac{P(good \mid offer) P(offer)}{P(good \mid offer) P(offer) + P(good \mid no offer) P(no offer)}$

$$=\frac{0.95\ (0.50)}{0.95\ (0.50)+0.75\ (0.50)}$$

$$= 0.5588$$

Problem 6

Textbook (CR): 7.16 (only part a) Solution: **a.** E(X) = 0.05 (1) + 0.45 (2) + 0.30(3) + 0.20(4) = 0.05 + 0.90 + 0.90 + 0.80= 2.65

Var(X) =
$$0.05 (1-2.65)^2 + 0.45 (2-2.65)^2 + 0.30(3-2.65)^2 + 0.20(4-2.65)^2$$

= $0.05 (2.72) + 0.45 (0.42) + 0.30(0.12) + 0.20(1.82)$
= 0.728

$$\sigma X = \sqrt{0.728} = 0.853$$

Problem 7

Textbook (CR): 7.19 Solution:

a. E(Revenue from A)

= \$3.50 E(Unit sales) = \$3.50 (2000) = \$7000

Var(Revenue from A)

= 3.50² Var(Unit sales) = 3.50² (1000) = 12,250 "dollars squared"

b.

E(Total revenue) = \$3.50(2000) + \$2.00

= \$3.50 (2000) + \$2.00 (10,000) + \$1.87 (8500) = \$42,895

Var(Total revenue)

$$= 3.50^{2} (1000) + 2.00^{2} (6400) + 1.87^{2} (1150)$$

= 41,871 "dollars squared"

Problem 8

For the following probability density function:

$$f_X(x) = \begin{cases} kx & \text{for } 0 \le x \le 1 \\ k & \text{for } 1 < x \le 2 \end{cases}$$

- (a) Find the value *k* that is necessary to make the probability density function legitimate,
- (b) Graph both the density and the cumulative functions,
- (c) Determine the mean, variance, standard deviation, and coefficient of variation.
- (d) Find the following probabilities:
 - P (X = 1.5), P (X > 0.5), and P ($1 \le X \le 2$)

*** SOLUTION ***

(a) <u>*k* value: see next page.</u>

$$1 = \int_{-\infty}^{\infty} f(x) dx = \int_{0}^{1} kx dx + \int_{1}^{2} k dx$$

$$= k \frac{x^{2}}{2} \Big|_{0}^{1} + k x \Big|_{1}^{2} = \frac{k}{2} + k = \frac{3}{2} k$$

$$k = \frac{2}{3}$$

$$F(x) = \int_{0}^{x} kt dt = \int_{0}^{x} \frac{2}{3} tt dt = \frac{2}{3} \frac{t^{2}}{2} \Big|_{0}^{x} = \frac{1}{3} x^{2} \text{ for } (0 \le x \le 1)$$

$$F(x) = \frac{1}{3} + \int_{1}^{x} k dt = \frac{1}{3} + \int_{1}^{x} \frac{2}{3} dt = \frac{1}{3} + \frac{2}{3} t \Big|_{1}^{x} = \frac{1}{3} + \frac{2}{3} (x - 1) \text{ for } (1 < x \le 2)$$

(b) <u>Graphs of the density and the cumulative functions:</u>

(c) Mean, variance, standard deviation, and coefficient of variation:

$$f_{X}(x) = \begin{cases} \frac{\pi}{3}x & \text{for } 0 \le x \le 1\\ \frac{2}{3} & \text{for } 1 < x \le 2 \\ \mu = \int_{0}^{1} x \left(\frac{2}{3}x\right) dx + \int_{1}^{2} x \left(\frac{2}{3}\right) dx = \frac{11}{9} \\ \text{or from geometry in Problem 3-19} \\ \mu = (\frac{1}{2})(\frac{2}{3}) + (\frac{2}{3})(\frac{3}{2}) = \frac{2}{9} + 1 = \frac{11}{9} \\ \sigma^{2} = \int_{0}^{1} \left(x - \frac{11}{9}\right)^{2} \left(\frac{2}{3}x\right) dx + \int_{1}^{2} \left(x - \frac{11}{9}\right)^{2} \left(\frac{2}{3}\right) dx = 5.1173 \\ \sigma = 2.2621 \end{cases}$$

(d) Finding Probabilities:

P(1.5) = 0, by definition of continuous probability distribution.

P (X>0.5) = 1 - P(X ≤ 0.5) = 1 - F_X(0.5) = 1 -
$$\frac{1}{3}(0.5)^2 = 0.92$$

P (1 ≤ X ≤ 2) = F_X(2) - F_X(1) = $\left[\frac{1}{3} + \frac{2}{3}(2-1)\right] - \frac{1}{3}(1)^2 = \frac{2}{3} = 0.67$