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University of Maryland, College Park 
Department of Civil and Environmental Engineering 

 
Quiz 4 Solution, closed book & notes, for 15 minutes 

November 12, 2001 
 
ENCE 302 
Probability and Statistics for Civil Engineers  Name:___________________ 
 
Problem 1 
The maximum impact pressure of ocean waves on coastal structures may be determined by 

Where ρ = density of water, K = length of hypothetical piston, D = thickness of air cushion, V = 
horizontal velocity of advancing wave.  Suppose that the mean crest velocity V is 4.5 ft/sec with 
COV of 0.2.  Note that ρ, K, and D are constants.  If ρ = 1.96 slugs/cu ft, and the ratio K/D = 35, 
determine the mean and standard deviation of the peak impact pressure. 
 

*** SOLUTION *** 
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Problem 1 
The study duration and grade point average (GPA) of students graduating with B.S. degree from 
an engineering school were studied.  With X defined as the number of years it takes to graduate 
and Y as the GPA, it was observed that X could be 4, 5, or 6 years and Y could be 2, 3, or 4.  The 
following table shows the number of students for each combination of X and Y. 

           X     
Y  4 5 6 

2 5 15 60 
3 50 80 20 
4 20 40 10 

(a) Find the joint probability mass function (PMF) for X and Y. 
(b) Determine the marginal PMF of X and the marginal PMF of Y. 
(c) If only a GPA of 3 is under consideration (i.e., Y = 3), determine the conditional PMF  

 of X. 
 

*** SOLUTION *** 
 

(a) Joint probability mass function (PMF) for X and Y: 
Total # of students = 5+15+60+50+80+20+20+40+10 = 300 students 

           X     
Y  4 5 6 

2 0.0167 0.0500 0.2000 
3 0.1667 0.2667 0.0667 
4 0.0667 0.1333 0.0333 

 
(b) Marginal PMF of X: 
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Marginal PMF of Y : 
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(c) If only a GPA of 3 is under consideration (i.e., Y = 3), the conditional PMF  

 of X will be: 
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Formulas 
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■ Marginal Distributions
The marginal mass function for X2 that is not 
equal to zero is

The marginal mass function for X1 that is not 
equal to zero is
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■ Conditional Probability Mass Function
The conditional probability mass function for 
two random variables X1 and X2 is given by
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■ Multiple Random Variables
– If the function Y = g(X) is given by
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■ Approximate Methods (Random Vector)
– First-order (approximate ) Mean

– First-order (approximate) Variance
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■ Approximate Methods (Random Vector)
– First-order (approximate) Variance

If the Xi’s are uncorrelated 
(statistically independent), then
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