# University of Maryland, College Park Department of Civil and Environmental Engineering 

Quiz 4 Solution, closed book \& notes, for 15 minutes
November 12, 2001
ENCE 302
Probability and Statistics for Civil Engineers
Name:

## Problem 1

The maximum impact pressure of ocean waves on coastal structures may be determined by

$$
\rho_{\max }=2.7 \frac{\rho K V^{2}}{D}
$$

Where $\rho=$ density of water, $K=$ length of hypothetical piston, $D=$ thickness of air cushion, $V=$ horizontal velocity of advancing wave. Suppose that the mean crest velocity $V$ is $4.5 \mathrm{ft} / \mathrm{sec}$ with COV of 0.2 . Note that $\rho, K$, and $D$ are constants. If $\rho=1.96$ slugs $/ \mathrm{cu} \mathrm{ft}$, and the ratio $K / D=35$, determine the mean and standard deviation of the peak impact pressure.
$\mathrm{E}\left(\rho_{\text {max }}\right)=\mu_{\rho_{\text {max }}} \approx g[\mathrm{E}(V)]=2.7(1.96)(35)(4.5)^{2}=3750.7 \mathrm{psf}$
and
$\left.\frac{d \rho_{\max }}{d V}\right|_{V=4.5}=\frac{d}{d V}\left(2.7 \frac{\rho K V^{2}}{D}\right)=2(2.7) \frac{\rho K V}{D}=2(2.7)(1.96)(35)(4.5)=1,666.98$
$\therefore \operatorname{Var}\left(\rho_{\max }\right) \approx\left(\left.\frac{d \rho_{\max }}{d V}\right|_{V=4.5}\right)^{2} \operatorname{Var}(V)=(1,666.98)^{2}(0.2 \times 4.5)^{2}=2,250,846.1 \mathrm{psf}^{2}$
$\therefore \sigma_{\rho_{\text {max }}}=\sqrt{2,250,846.1}=1,500.3 \mathrm{psf}$

## Problem 1

The study duration and grade point average (GPA) of students graduating with B.S. degree from an engineering school were studied. With $X$ defined as the number of years it takes to graduate and $Y$ as the GPA, it was observed that $X$ could be 4,5 , or 6 years and $Y$ could be 2, 3, or 4 . The following table shows the number of students for each combination of $X$ and $Y$.

| $Y$ | 4 | 5 | 6 |
| :---: | :---: | :---: | :---: |
| 2 | 5 | 15 | 60 |
| 3 | 50 | 80 | 20 |
| 4 | 20 | 40 | 10 |

(a) Find the joint probability mass function (PMF) for $X$ and $Y$.
(b) Determine the marginal PMF of $X$ and the marginal PMF of $Y$.
(c) If only a GPA of 3 is under consideration (i.e., $Y=3$ ), determine the conditional PMF of $X$.

## *** SOLUTION ***

(a) Joint probability mass function (PMF) for $X$ and $Y$ :

Total \# of students $=5+15+60+50+80+20+20+40+10=300$ students

| $Y$ | 4 | 5 | 6 |
| :---: | :---: | :---: | :---: |
| 2 | 0.0167 | 0.0500 | 0.2000 |
| 3 | 0.1667 | 0.2667 | 0.0667 |
| 4 | 0.0667 | 0.1333 | 0.0333 |

(b) Marginal PMF of $X$ :

$$
P_{X_{1}}\left(x_{1}\right)=\sum_{\text {all } x_{2}} P_{X_{1} X_{2}}\left(x_{1}, x_{2}\right) \quad P_{X_{2}}\left(x_{2}\right)=\sum_{\text {all } x_{1}} P_{X_{1} X_{2}}\left(x_{1}, x_{2}\right)
$$

$P_{X}(4)=0.0167+0.1667+0.0667=0.25$
$P_{X}(5)=0.0500+0.2667+0.1333=0.45$
$P_{X}(6)=0.2000+0.0667+0.0333=0.30$
Marginal PMF of $Y$ :
$P_{Y}(2)=0.0167+0.0500+0.2000=0.267$
$P_{Y}(3)=0.1667+0.2667+0.0667=0.500$
$P_{Y}(5)=0.0667+0.1333+0.0333=0.233$
(c) If only a GPA of 3 is under consideration (i.e., $Y=3$ ), the conditional PMF of $X$ will be:

$$
P_{X \mid Y}\left(x_{i} \mid 3\right)=\frac{P_{X, Y}\left(x_{i}, 3\right)}{P_{Y}(3)}
$$

Therefore,

$$
\begin{aligned}
& P_{X \mid Y}(4 \mid 3)=\frac{0.1667}{0.5}=0.3334 \\
& P_{X \mid Y}(5 \mid 3)=\frac{0.2667}{0.5}=0.5334 \\
& P_{X \mid Y}(6 \mid 3)=\frac{0.0667}{0.5}=0.1334
\end{aligned}
$$

## Formulas

## - Approximate Methods (Random Vector)

- First-order (approximate ) Mean

$$
\mathrm{E}(Y)=\mu_{Y}=g\left[\mathrm{E}\left(X_{1}\right), \mathrm{E}\left(X_{2}\right), \ldots, \mathrm{E}\left(X_{n}\right)\right]
$$

- First-order (approximate) Variance

$$
\operatorname{Var}(Y)=\sigma_{Y}^{2}=\left.\left.\sum_{i=1}^{n} \sum_{j=1}^{n} \frac{\partial g(\boldsymbol{X})}{\partial X_{i}}\right|_{\mathrm{E}\left(X_{i}\right)} \frac{\partial g(\boldsymbol{X})}{\partial X_{j}}\right|_{\mathrm{E}\left(X_{i}\right)} \operatorname{Cov}\left(X_{i}, X_{j}\right)
$$

$$
\mathrm{P}(A \mid B)=\frac{\mathrm{P}(A \cap B)}{\mathrm{P}(B)} \quad \mathrm{P}(B) \neq 0
$$

## - Marginal Distributions

The marginal mass function for $X_{2}$ that is not equal to zero is

$$
P_{X_{2}}\left(x_{2}\right)=\sum_{\text {all } x_{1}} P_{X_{1} X_{2}}\left(x_{1}, x_{2}\right)
$$

The marginal mass function for $X_{1}$ that is not equal to zero is

$$
P_{X_{1}}\left(x_{1}\right)=\sum_{\text {all } x_{2}} P_{X_{1} X_{2}}\left(x_{1}, x_{2}\right)
$$

- Conditional Probability Mass Function

The conditional probability mass function for two random variables $X_{1}$ and $X_{2}$ is given by
$P_{X_{1} X_{2}}\left(x_{1} \mid x_{2}\right)=\frac{P_{X_{1} X_{2}}\left(x_{1}, x_{2}\right)}{P_{X_{2}}\left(x_{2}\right)}$
where $P_{X_{1} \mid X_{2}}\left(x_{1} \mid x_{2}\right)$ results in the probability of $X_{1}=x_{1}$ given that $X_{2}=x_{2}$. $P_{X_{2}}\left(x_{2}\right)=$ marginal mass function for $X_{2}$

- Approximate Methods (Random Vector)
- First-order (approximate) Variance

If the $X_{i}$ 's are uncorrelated (statistically independent), then

$$
\operatorname{Var}(Y)=\sigma_{Y}^{2} \approx \sum_{i=1}^{n}\left(\left.\frac{\partial g(\boldsymbol{X})}{\partial X_{i}}\right|_{\mathrm{E}\left(X_{i}\right)}\right)^{2} \operatorname{Var}\left(X_{i}\right)
$$

$$
\begin{aligned}
& \bar{X}=\frac{1}{n} \sum_{i=1}^{n} x_{i} \\
& S^{2}=\frac{1}{n-1} \sum_{i=1}^{n}\left(x_{i}-\bar{X}\right)^{2} \\
& S^{2}=\frac{1}{n-1}\left[\sum_{i=1}^{n} x_{i}^{2}-\frac{1}{n}\left(\sum_{i=1}^{n} x_{i}\right)^{2}\right]
\end{aligned}
$$

OR

$$
S^{2}=\frac{1}{n-1}\left[\sum_{i=1}^{n} x_{i}^{2}-n \bar{X}^{2}\right]
$$

## - Multiple Random Variables

- If the function $Y=g(X)$ is given by

$$
Y=g(\boldsymbol{X})=a_{0}+a_{1} X_{1}+a_{2} X_{2}+\ldots+a_{n} X_{n}
$$

$$
\text { Then } \begin{aligned}
& \mathrm{E}(Y)=a_{0}+a_{1} \mathrm{E}\left(X_{1}\right)+a_{2} \mathrm{E}\left(X_{2}\right)+\ldots+a_{n} \mathrm{E}\left(X_{n}\right) \\
& \text { and } \\
& \operatorname{Var}(Y)=\sum_{i=1}^{n} \sum_{j=1}^{n} a_{i} a_{j} \operatorname{Cov}\left(X_{i}, X_{j}\right)=\sum_{i=1}^{n} \sum_{j=1}^{n} a_{i} a_{j} \rho_{X_{i}, X_{j}} \sigma_{X_{i}} \sigma_{X_{j}}
\end{aligned}
$$

If the random variables of $\boldsymbol{X}$ are uncorrelated, then

$$
\operatorname{Var}(Y)=\sum_{i=1}^{n} a_{i}^{2} \operatorname{Var}\left(X_{i}\right)
$$

