University of Maryland at College Park Department of Civil & Environmental Engineering

Quiz 1 Solution, Closed Book & Notes, for 15 minutes September 10, 2001

ENCE 302	
Probability and Statistics for Civil Engineers	Name:

Problem

Develop a Taylor series expansion for the following function for three terms:

$$f(x) = x^2 - 2x^{0.5} + 2$$

Use $x_0 = 1$ as the base (or starting) point and *h* as the increment. Evaluate the series for x = 1.1 and 1.5, and, compare your results with the true value for both cases. NOTE: Taylor series expansion is given by:

$$f(x_0 + h) = f(x_0) + hf^1(x_0) + \frac{h^2}{2!}f^2(x_0) + \frac{h^3}{3!}f^3(x_0) + \dots + \frac{h^n}{n!}f^n(x_0)$$
**** Solution****

For
$$x = 1.1$$
, $h = 0.1$ and for $x = 1.5$, $h = 0.5$
 $f(x) = x^2 - 2x^{0.5} + 2 \Rightarrow f(1) = 1$
 $f'(x) = 2x - \frac{1}{\sqrt{x}} \Rightarrow f'(1) = 2(1) - \frac{1}{\sqrt{1}} = 1$
 $f''(x) = 2 + \frac{1}{2x^{1.5}} \Rightarrow f''(1) = 2 + \frac{1}{2(1)^{1.5}} = 2.5$
 $f(1.1) = f(1+0.1) = 1 + 0.1(1) + \frac{(0.1)^2}{2}(2.5) = 1.1125$ True value = 1.1124, Abs Error = 0.0001
 $f(1.5) = f(1+0.5) = 1 + 0.5(1) + \frac{(0.5)^2}{2}(2.5) = 1.8125$ True value = 1.8005, Abs Error = 0.0120

As the separation distance (h) gets smaller, the solution converges to true value

Problem 2

If a pair of dice rolled simultaneously, what is the probability that the sum of the dots is

- a. 6
- b. 1
- c. an even number
- d. an odd number

			SECOND DIE					
		•	٠.	٠.	::			
FIRST DIE	•	(1, 1)	(1, 2)	(1, 3)	(1, 4)	(1, 5)	(1, 6)	
		(2, 1)	(2, 2)	(2, 3)	(2, 4)	(2, 5)	(2, 6)	
		(3, 1)	(3, 2)	(3, 3)	(3, 4)	(3, 5)	(3, 6)	
	::	(4, 1)	(4, 2)	(4, 3)	(4, 4)	(4, 5)	(4, 6)	
		(5, 1)	(5, 2)	(5, 3)	(5, 4)	(5, 5)	(5, 6)	
	::	(6, 1)	(6, 2)	(6, 3)	(6, 4)	(6, 5)	(6, 6)	

*** Solution ***

- a. $\frac{5}{36} = 0.1389$
- b. $\frac{0}{36} = 0$
- c. $\frac{18}{36} = \frac{1}{2} = 0.5$
- d. $\frac{18}{36} = \frac{1}{2} = 0.5$