University of Maryland at College Park Department of Civil \& Environmental Engineering

Quiz 1 Solution, Closed Book \& Notes, for 15 minutes
September 10, 2001

ENCE 302
Probability and Statistics for Civil Engineers
Name: \qquad

Problem

Develop a Taylor series expansion for the following function for three terms:

$$
f(x)=x^{2}-2 x^{0.5}+2
$$

Use $x_{0}=1$ as the base (or starting) point and h as the increment. Evaluate the series for $x=1.1$ and 1.5 , and, compare your results with the true value for both cases. NOTE: Taylor series expansion is given by:
$f\left(x_{0}+h\right)=f\left(x_{0}\right)+h f^{1}\left(x_{0}\right)+\frac{h^{2}}{2!} f^{2}\left(x_{0}\right)+\frac{h^{3}}{3!} f^{3}\left(x_{0}\right)+\ldots .+\frac{h^{n}}{n!} f^{n}\left(x_{0}\right)$
**** Solution****
For $x=1.1, \quad h=0.1 \quad$ and \quad for $x=1.5, h=0.5$
$f(x)=x^{2}-2 x^{0.5}+2 \quad \Rightarrow \quad f(1)=1$
$f^{\prime}(x)=2 x-\frac{1}{\sqrt{x}} \quad \Rightarrow \quad f^{\prime}(1)=2(1)-\frac{1}{\sqrt{1}}=1$
$f^{\prime \prime}(x)=2+\frac{1}{2 x^{1.5}} \quad \Rightarrow \quad f^{\prime \prime}(1)=2+\frac{1}{2(1)^{1.5}}=2.5$
$f(1.1)=f(1+0.1)=1+0.1(1)+\frac{(0.1)^{2}}{2}(2.5)=1.1125 \quad$ True value $=1.1124$, Abs Error $=0.0001$
$f(1.5)=f(1+0.5)=1+0.5(1)+\frac{(0.5)^{2}}{2}(2.5)=1.8125 \quad$ True value $=1.8005$, Abs Error $=0.0120$

As the separation distance (h) gets smaller, the solution converges to true value

Problem 2

If a pair of dice rolled simultaneously, what is the probability that the sum of the dots is
a. 6
b. 1
c. an even number
d. an odd number

[^0]a. $\frac{5}{36}=0.1389$
b. $\quad \frac{0}{36}=0$
c. $\frac{18}{36}=\frac{1}{2}=0.5$
d. $\frac{18}{36}=\frac{1}{2}=0.5$

[^0]: *** Solution ***

