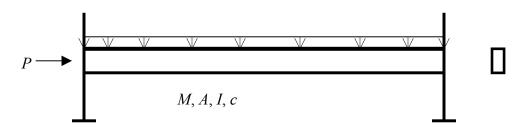
University of Maryland

Department of Civil and Environmental Engineering College Park, Maryland

Simulation Project

ENCE 302 – Probability and Statistics for Civil Engineers – FALL 2001

Team 1


Members:

- 1) DePalma, John Salvatore (leader)
- 2) DiMarco, Paul Salvatore
- 3) Traenkner, Eric Michael

Problem Statement:

Each team is required to investigate the compressive stress at the extreme fiber of a steel beam shown below. The compressive stress at the extreme fiber is given by

$$\sigma = \frac{P}{A} + \frac{Mc}{I} \le F_{y}$$

where σ = computed compressive stress, c = distance from the neutral axis to the extreme fiber, P = applied axial load, M = applied moment due to external loads, A = cross sectional area of the beam, I = centriodal moment of inertia of the cross section, and F_y = yield strength of steel. The variables c, P, M, A, I, and F_y are called basic random variables. The probabilistic characteristics of these variables are provided in the table shown below (Table 1).

- 1. Determine the probabilistic characteristic of the compressive stress σ .
- 2. Compute the yield stress exceedence probability.
- 3. Perform parametric analysis.
- 4. Develop additional items of your own creation.
- 5. Prepare a report that also includes your findings and the results on the experimental simulation of two dice/coins.

Table 1. Probabilistic Characteristic of Basic Random Variables for the Stress σ

Random Variable	Mean	Coefficient of Variation (COV)	Distribution Type
<i>c</i> (in)	15	0.04	Normal
P (kip)	400	0.20	Lognormal
M (kip-in)	4,900	0.25	Lognormal
$A (in^2)$	200	0.05	Normal
$I(in^4)$	2,200	0.08	Normal
F_{y} (ksi)	50	0.15	Lognormal

Report:

Professional presentation of the project report is required. It should consist of neat and organized solutions on one side of 8.5"x11" papers. Computer and spreadsheet-generated plots and printouts are required for all samples and summary calculations. The report should include:

Title Page, Abstract, and Table of Contents

Problem Description

Objectives

Methodology

Simulation Data

Probabilistic Characteristics of σ

Yield Strength Exceedence Probability

Parametric Analysis

Confidence Intervals

Additional Items

Conclusions

References and Appendices (if applicable)

Due Date:

The project is due on the last day of classes.