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Conditional Moments, Covariance, 
and Correlation Coefficient

Computational Procedures for Moments
– Discrete Random Variable:

– The kth moment about the origin is given by

– Continuous Random Variable:
– The kth moment about the origin is given by
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The previous  moments are considered 
as a special case of mathematical 
expectation.
The mathematical expectation of an 
arbitrary function g(x), which is a 
function of the random vector X, is 
defined in the following viewgraph for 
discrete and continuous cases.

Conditional Moments, Covariance, 
and Correlation Coefficient
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Conditional Moments, Covariance, 
and Correlation Coefficient

Mathematical Expectation
– Discrete Random Variable:

– The mathematical expectation is given by

– Continuous Random Variable:
– The mathematical expectation is given by
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Conditional Moments, Covariance, 
and Correlation Coefficient

For simplicity, the presentation of the 
materials in the remaining part of this 
section is limited to two random 
variables.
For the two-dimensional case, X1 and 
X2, the conditional mean for X1 given 
that X2 takes value x2 denoted µX1|X2, is 
defined in terms the conditional mass 
and density functions for the discrete 
and continuous random variables.
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Conditional Mean
– Discrete Random Variable

– Continuous Random Variable
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Conditional Mean
For statistically uncorrelated random variables 
X1 and X2, the conditional mean is given by
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Conditional Variance
– Discrete Random Variables

– Continuous Random Variables
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The variance of a random variable X1
can also be computed using conditional 
variance as follows:

Conditional Moments, Covariance, 
and Correlation Coefficient
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Covariance of Two Random Variables
The covariance (Cov) of two random variables 
X1 and X2 is defined in terms of mathematical 
expectation as( ) ( )( )[ ]
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Covariance of Two Random Variables
• It can be shown that the Cov can also be 

determined using the following equation:

Conditional Moments, Covariance, 
and Correlation Coefficient
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Covariance of Two Random Variables
– If X1 and X2 are statistically uncorrelated 

random variables, then

Conditional Moments, Covariance, 
and Correlation Coefficient
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Correlation Coefficient
The correlation coefficient of two random 
variables X1 and X2 is defined as a normalized 
covariance with respect to the standard 
deviations of X1 and X2 and is given by
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Correlation Coefficient
• If the correlation coefficient is zero, then the two 

random variables are said to be uncorrelated.
• In order for ρX1X2 to be zero, the Cov(X1 X2) must 

be zero.
• Therefore X1 and X2 are statistically uncorrelated.
• However, the converse of this finding is not true.
• The correlation coefficient can be viewed as a 

measure of the degree of linear association 
between X1 and X2.

Conditional Moments, Covariance, 
and Correlation Coefficient
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Example: Two Discrete RV’s
Given the following joint density function of 
random variables X and Y and assume n = 2:

(a) Find the marginal density functions of X and Y.
(b) Determine the mean or expected values of X   

and Y.
(c) The covariance and correlation coefficient of X

and Y

Conditional Moments, Covariance, 
and Correlation Coefficient
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Example (cont’d): Two Discrete RV’s
a) Marginal density functions

Conditional Moments, Covariance, 
and Correlation Coefficient
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Example (cont’d): Two Discrete RV’s
b) Expected values of X and Y

Conditional Moments, Covariance, 
and Correlation Coefficient
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Example (cont’d): Two Discrete RV’s
c) Covariance and correlation of X and Y

Conditional Moments, Covariance, 
and Correlation Coefficient
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Example (cont’d): Two Discrete RV’s
c) Covariance and correlation (cont’d)

Conditional Moments, Covariance, 
and Correlation Coefficient
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Functions of Random Variables

Many engineering problems deal with a 
dependent variables that is a function of 
one or more independent variables
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Functions of Random Variables

Three cases to be considered:
– Probability distributions for dependent 

random variables,
– Mathematical expectations, and
– Approximate methods

CHAPTER 6b.  MULTIPLE RANDOM VARIABLES Slide No. 21

Functions of Random Variables

A random variable X is defined as a 
mapping from a sample space of an 
engineering system or experiment to the 
real line of numbers.
If Y is defined to be a dependent 
variable in terms of a function                     

then Y is also a random variable
( )XgY =
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Functions of Random Variables

Examples
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Functions of Random Variables

Single Random Variable
– The stress (Y) in a beam is a function of an 

applied load (X).  If the load is random, the 
stress is also random

– Linear Case
)(XgY =

( ) ( ) ( )XabXaY
ba

baXXgY

VarVar                   EE           
numbers real are  and  where

)(          

2=+=

+==



13

CHAPTER 6b.  MULTIPLE RANDOM VARIABLES Slide No. 24

Functions of Random Variables

Multiple Random Variables
– The stress (Y) in a beam is a function of an 

applied load, material properties, and 
geometry:

– Linear Case
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Functions of Random Variables

Multiple Random Variables
– It should be noted that

– The variance of Y can be also obtained from

– If the random variables of the vector X are 
statistically uncorrelated, then

( ) ( ) 2
XσVar,Cov == iii XXX

( )
jiji X

n

i

n

j
XXXjiaaY σσρVar

1 1
∑∑
= =

=

( ) ( )∑
=

=
n

i
ii XaY

1

2VarVar



14

CHAPTER 6b.  MULTIPLE RANDOM VARIABLES Slide No. 26

Functions of Random Variables

Example: Mean and Variance of a 
Linear Function
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Functions of Random Variables

Mathematical Expectation
Mathematical expectation for Y = g(X)
– Discrete Case

– Continuous Case
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Functions of Random Variables

Variance
The variance for Y = g(X)
– Discrete Case

– Continuous Case

( ) ( )[ ] ( ) ( )[ ]( ) ( )∑
=

−==
n

i
iXii xPxgxgXgY

1

2EVarVar

( ) ( )[ ] ( ) ( )[ ]( ) ( )dxxfxgxgXgY iXii  EVarVar 2∫
+∞

∞−

−==

CHAPTER 6b.  MULTIPLE RANDOM VARIABLES Slide No. 29

Functions of Random Variables

Special Case
– If the function Y = g(X) = a X + b, then

Where a and b are real numbers.
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Functions of Random Variables

Multiple Random Variables
– If the function Y = g(X) is given by

Then
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Functions of Random Variables

Multiple Random Variables
– If the function Y = g(X) is given by

Then
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Functions of Random Variables

Example: Cost of Precast Concrete
The total cost C to manufacture a concrete 
panel in a precast plant is

where X is the cost of materials, Y is the cost of 
labor.  If the costs X and Y are assumed to be 
uncorrelated with means of $100/panel and 
$250/panel, respectively, and with standard 
deviations of $10/panel and $50/panel, 
respectively, compute the mean,variance, 
standard deviation, and COV of the total cost.
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Functions of Random Variables

Example (cont’d): Cost of Precast
Concrete
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