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Introduction

In engineering, it is common to deal with 
two or more random variables 
simultaneously in solving problems.
If the load applied to a structure is 
considered to be a random variable, 
then the structural response will also be 
a random variable.
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Introduction

The load and the response can be 
modeled separately as random 
variables; however, it is more prudent to 
model the uncertainty jointly.
More information can be extracted from 
the joint distributions.
Thus, it is necessary to extend the 
discussion to multiple random variables.
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Introduction

In general, multiple random variables 
are encountered in the following two 
forms:

1. Joint occurrences of multiple random 
variables that can be correlated or 
uncorrelated

2. Random variables that are known in 
terms of their functional relationship with 
other basic random variables
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Joint Random Variables and 
Their Probability Distributions

The outcomes, E1, E2,…, En, that 
constitute a sample space S are 
mapped to an n-dimensional (n-D) 
space of real numbers.
The functions that establish such a 
transformation to the n-D space are 
called multiple random variables (or 
random vectors).
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Joint Random Variables and 
Their Probability Distributions

Multiple random variables are classified 
into two types:
– Discrete random variables
– Continuous random variables

A distinction is made between these two 
types because the computations of 
probabilities depend on their type.
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Probability for Discrete Random 
Vectors
Joint Probability Mass Function (JPMF)

The joint probability mass function for a 
discrete multiple random variable or random 
vector X = (X1, X2,..,Xn) is given by

Note that
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Probability for Discrete Random 
Vectors
Joint Cumulative Mass Function (JCMF)

The joint cumulative mass function for a discrete 
random variable or random vector X = (X1, 
X2,..,Xn) is given by
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Probability for Discrete Random 
Vectors

Properties of JCMF
1. FX(all x → ∞) = 0
2. FX(x1, x2,…, xi → - ∞,…, xn) = 0, for any i =1, 2,…, n
3. FX(x1, x2,…, xi → - ∞,…, xk → - ∞,…,xn) = 0, for any values 

of  xi,…, xk

4. FX(x1, x2,…, xi → + ∞,…, xn) = FXj(xj: j = 1, 2, …, n and j ≠ i), 
called the marginal distribution of all the random variables 
except Xi

5. FX(x1, x2,…, xi → + ∞,…, xk → + ∞,…,xn) = FXj(xj: j =1, 2,…, 
n and j ≠ i to k), called the marginal distribution of all the 
random variables except Xi to Xk

6. FX(all x → + ∞) = 1
7. FX(x) is a nonnegative and nondecreasing function of x
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Probability for Discrete Random 
Vectors

Properties of JCMF
• The first, second, and third properties define 

the limiting behavior of FX(x); as one or more of 
the random variables approach -∞, FX(x) 
approaches zero.

• The fourth and fifth properties define the 
possible marginal distributions as one or more 
of the random variables approaches +∞.

• The sixth property is based on the probability 
axiom.

• The seventh property is based on the 
cumulative nature of FX(x).
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Probability for Two Discrete 
Random Variables

For simplicity, the presentation of the 
materials in the remaining part of this 
section is limited to two random 
variables.
The presented concepts can be 
generalized to n random variables 
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Probability for Two Discrete 
Random Variables

Conditional Probability Mass Function
The conditional probability mass function for 
two random variables X1 and X2 is given by
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Probability for Two Discrete 
Random Variables

Conditional Probability Mass Function
The conditional probability mass function for 
two random variables X1 and X2 is given by
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Probability for Two Discrete 
Random Variables

Marginal Distributions
The marginal mass function for X2 that is not 
equal to zero is

The marginal mass function for X1 that is not 
equal to zero is
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Probability for Two Discrete 
Random Variables

Properties
If X1 and X2 are statistically independent 

(uncorrelated) random variables, then
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Probability for Two Discrete 
Random Variables

Example: Two Discrete RV’s
The time to produce a typical engineering 

drawing, represented by a random variable X1, 
and its quality, represented by a random 
variable X2, are under consideration.  Suppose 
X1 can be 70, 80, 90, or 100 hours.  The quality 
of a drawing can be considered to be 
moderate, good, and excellent, and X2 can be 
considered to be 1, 2, and 3, respectively.  
Suppose that 100 such drawing are evaluated 
and the information provided the next table is 
obtained.
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Probability for Two Discrete 
Random Variables

Example (cont’d): Two Discrete RV’s

2212853

126432

238151

X2

100908070
X1
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Probability for Two Discrete 
Random Variables

Example (cont’d): Two Discrete RV’s
1. Find the joint PMF of X1 and X2.
2. Plot the marginal PMF of X1 and X2.
3. If only excellent quality drawings are 

acceptable (i.e., X2 = 3), plot the 
conditional PMF of X2.
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Probability for Two Discrete 
Random Variables

Example (cont’d): Two Discrete RV’s
1. The joint PMF PX1,X2(x1,x2) of X1 and X2.

0.220.120.080.053

0.120.060.040.032

0.020.030.080.151

X2

100908070
X1
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Probability for Two Discrete 
Random Variables

Example (cont’d): Two Discrete RV’s
2. The marginal PMF of X1

0.220.120.080.053
0.120.060.040.032
0.020.030.080.151

X2
100908070

X1
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Probability for Two Discrete 
Random Variables

Example (cont’d): Two Discrete RV’s
( ) ( )∑=

2

211
 all

211 ,
x

XXX xxPxPMarginal PMF of X1

0

0.05

0.1

0.15

0.2

0.25

0.3

0.35

0.4

70 80 90 100
X 1

P X
1( x

1)
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Probability for Two Discrete 
Random Variables

Example (cont’d): Two Discrete RV’s
The marginal PMF of X2

0.220.120.080.053
0.120.060.040.032
0.020.030.080.151

X2
100908070

X1
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Probability for Two Discrete 
Random Variables

Example (cont’d): Two Discrete RV’s
( ) ( )∑=
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Probability for Two Discrete 
Random Variables

Example (cont’d): Two Discrete RV’s
3. Conditional Probability of X1

0.220.120.080.053
0.120.060.040.032
0.020.030.080.151
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100908070

X1
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Probability for Two Discrete 
Random Variables

Example (cont’d): Two Discrete RV’s
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Probability for Continuous 
Random Vectors
Joint Probability Density Function (JPDF)

The joint probability density function for a 
continuous multiple random variable or random 
vector X = (X1, X2,..,Xn) is used to define

Note that
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Probability for Continuous 
Random Vectors

Joint Cumulative Distribution Function 
(JCDF)

The joint cumulative distribution function of a 
continuous random variable is defined by

( ) ( ) ( )∫ ∫ ∫
∞− ∞− ∞−

=≤=
1 2
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Probability for Continuous 
Random Vectors

Properties of JCDF
1. FX(all x → ∞) = 0
2. FX(x1, x2,…, xi → - ∞,…, xn) = 0, for any i =1, 2,…, n
3. FX(x1, x2,…, xi → - ∞,…, xk → - ∞,…,xn) = 0, for any values 

of  xi,…, xk

4. FX(x1, x2,…, xi → + ∞,…, xn) = FXj(xj: j = 1, 2, …, n and j ≠ i), 
called the marginal distribution of all the random variables 
except Xi

5. FX(x1, x2,…, xi → + ∞,…, xk → + ∞,…,xn) = FXj(xj: j =1, 2,…, 
n and j ≠ i to k), called the marginal distribution of all the 
random variables except Xi to Xk

6. FX(all x → + ∞) = 1
7. FX(x) is a nonnegative and nondecreasing function of x
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Probability for Continuous 
Random Vectors

– The joint density function can be obtained 
from the a given joint cumulative 
distribution function as follows:
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Probability for Two Continuous 
Random Variables

For simplicity, the presentation of the 
materials in the remaining part of this 
section is limited to two random 
variables.
The presented concepts can be 
generalized to n random variables 
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Probability for Two Continuous 
Random Variables
Conditional Probability Density Function

The conditional probability density function for two 
random variables X1 and X2 is given by
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Probability for Two Continuous 
Random Variables
Conditional Probability Density Function

The conditional probability density function for two 
random variables X1 and X2 is given by

( ) ( )
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Probability for Two Continuous 
Random Variables

Marginal Distributions
The marginal density function for X2 that is not 
equal to zero is

The marginal mass function for X1 that is not 
equal to zero is

( ) ( )∫
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Probability for Two Continuous 
Random Variables

Properties
If X1 and X2 are statistically independent 

(uncorrelated) random variables, then
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Probability for Two Continuous 
Random Variables

Example: Two Continuous RV’s
The joint density functions of two random variables X and Y

can be expressed as

(a) Determine the constant c.
(b) Determine the marginal density function for X.
(c) Determine the marginal density function for Y.
(d) Are X and Y statistically independent?
(e) Determine the probability of the following event:

FX, Y(1, 3)

( ) ( )( )
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Probability for Two Continuous 
Random Variables

Example (cont’d): Two Continuous RV’s
(a) ( )( )
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Probability for Two Continuous 
Random Variables

Example (cont’d): Two Continuous RV’s
(a) ( )( )
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Probability for Two Continuous 
Random Variables

Example (cont’d): Two Continuous RV’s
(b)

(c)

(d)
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Probability for Two Continuous 
Random Variables

Example (cont’d): Two Continuous RV’s
(e)

( ) ( ) ( ) 6875.09  4
96
13,1

3

0

2
1
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2
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