

CHAPTER 6a. MULTIPLE RANDOM VARIABLES

Slide No. 1

Introduction

■ In engineering, it is common to deal with two or more random variables simultaneously in solving problems.

- If the load applied to a structure is considered to be a random variable, then the structural response will also be a random variable.

Introduction

The load and the response can be modeled separately as random variables; however, it is more prudent to model the uncertainty jointly.

- More information can be extracted from the joint distributions.
- Thus, it is necessary to extend the discussion to multiple random variables.

CHAPTER 6a. MULTIPLE RANDOM VARIABLES

Introduction

- In general, multiple random variables are encountered in the following two forms:

1. Joint occurrences of multiple random variables that can be correlated or uncorrelated
2. Random variables that are known in terms of their functional relationship with other basic random variables

CHAPTER 6a. MULTIPLE RANDOM VARIABLES

Joint Random Variables and

Their Probability Distributions

- The outcomes, $E_{1}, E_{2}, \ldots, E_{n}$, that constitute a sample space S are mapped to an n-dimensional (n-D) space of real numbers.
- The functions that establish such a transformation to the n-D space are called multiple random variables (or random vectors).

CHAPTER 6a. MULTIPLE RANDOM VARIABLES

Joint Random Variables and

Their Probability Distributions
■ Multiple random variables are classified into two types:

- Discrete random variables
- Continuous random variables
- A distinction is made between these two types because the computations of probabilities depend on their type.

Probability for Discrete Random

Vectors

- Joint Probability Mass Function (JPMF)

The joint probability mass function for a discrete multiple random variable or random vector $\boldsymbol{X}=\left(X_{1}, X_{2}, . ., X_{n}\right)$ is given by

$$
P_{X}(x)=\mathrm{P}\left(X_{1}=x_{1}, X_{2}=x_{2}, \ldots, X_{n}=x_{n}\right)
$$

Note that

$$
0 \leq \mathrm{P}\left(X_{1}=x_{1}, X_{2}=x_{2}, \ldots, X_{n}=x_{n}\right) \leq 1
$$

CHAPTER 6a. MULTIPLE RANDOM VARIABLES

Probability for Discrete Random

Vectors

- Joint Cumulative Mass Function (JCMF)

The joint cumulative mass function for a discrete random variable or random vector $\boldsymbol{X}=\left(X_{1}\right.$, $X_{2}, . ., X_{n}$) is given by

$$
\begin{aligned}
F_{X}(x) & =\mathrm{P}\left(X_{1} \leq x_{1}, X_{2} \leq x_{2}, \ldots, X_{n} \leq x_{n}\right) \\
& =\sum_{\operatorname{all}\left(X_{1} \leq x_{1}, X_{2} \leq x_{2}, \ldots, X_{n} \leq x_{n}\right)} P_{X}\left(x_{1}, x_{2}, \ldots, x_{3}\right)
\end{aligned}
$$

Probability for Discrete Random

Vectors

Properties of JCMF

1. $\quad F_{X}($ all $x \rightarrow \infty)=0$
2. $\quad F_{X}\left(x_{1}, x_{2}, \ldots, x_{i} \rightarrow-\infty, \ldots, x_{n}\right)=0$, for any $i=1,2, \ldots, n$
3. $F_{X}\left(x_{1}, x_{2}, \ldots, x_{i} \rightarrow-\infty, \ldots, x_{k} \rightarrow-\infty, \ldots, x_{n}\right)=0$, for any values of x_{i}, \ldots, x_{k}
4. $\quad F_{X}\left(x_{1}, x_{2}, \ldots, x_{i} \rightarrow+\infty, \ldots, x_{n}\right)=F_{X j}\left(x_{j}: j=1,2, \ldots, n\right.$ and $\left.j \neq i\right)$, called the marginal distribution of all the random variables except X_{i}
5. $\quad F_{X}\left(x_{1}, x_{2}, \ldots, x_{i} \rightarrow+\infty, \ldots, x_{k} \rightarrow+\infty, \ldots, x_{n}\right)=F_{X j}\left(x_{j}: j=1,2, \ldots\right.$, n and $j \neq i$ to k), called the marginal distribution of all the random variables except X_{i} to X_{k}
6. $\quad F_{X}($ all $x \rightarrow+\infty)=1$
7. $F_{X}(x)$ is a nonnegative and nondecreasing function of x

CHAPTER 6a. MULTIPLE RANDOM VARIABLES

Slide No. 9

Probability for Discrete Random

Vectors

- Properties of JCMF
- The first, second, and third properties define the limiting behavior of $F_{\boldsymbol{x}}(\boldsymbol{x})$; as one or more of the random variables approach $-\infty, F_{\boldsymbol{x}}(\boldsymbol{x})$ approaches zero.
- The fourth and fifth properties define the possible marginal distributions as one or more of the random variables approaches $+\infty$.
- The sixth property is based on the probability axiom.
- The seventh property is based on the cumulative nature of $F_{\boldsymbol{x}}(\boldsymbol{x})$.

Probability for Two Discrete

Random Variables

- For simplicity, the presentation of the materials in the remaining part of this section is limited to two random variables.
- The presented concepts can be generalized to n random variables

CHAPTER 6a. MULTIPLE RANDOM VARIABLES

Probability for Two Discrete

Random Variables

- Conditional Probability Mass Function

The conditional probability mass function for two random variables X_{1} and X_{2} is given by
$P_{X_{1} \mid X_{2}}\left(x_{1} \mid x_{2}\right)=\frac{P_{X_{1} X_{2}}\left(x_{1}, x_{2}\right)}{P_{X_{2}}\left(x_{2}\right)}$
where $P_{X_{1} \mid X_{2}}\left(x_{1} \mid x_{2}\right)$ results in the probability of $X_{1}=x_{1}$ given that $X_{2}=x_{2}$.
$P_{X_{2}}\left(x_{2}\right)=$ marginal mass function for X_{2}

Probability for Two Discrete

Random Variables

- Conditional Probability Mass Function

The conditional probability mass function for two random variables X_{1} and X_{2} is given by
$P_{X_{2} \mid X_{1}}\left(x_{2} \mid x_{1}\right)=\frac{P_{X_{1} X_{2}}\left(x_{1}, x_{2}\right)}{P_{X_{1}}\left(x_{1}\right)}$
where $P_{X_{2} \mid X_{1}}\left(x_{2} \mid x_{1}\right)$ results in the probability of $X_{2}=x_{2}$ given that $X_{1}=x_{1}$.
$P_{X_{1}}\left(x_{1}\right)=$ marginal mass function for X_{1}

CHAPTER 6a. MULTIPLE RANDOM VARIABLES

Probability for Two Discrete

Random Variables

- Marginal Distributions

The marginal mass function for X_{2} that is not equal to zero is

$$
P_{X_{2}}\left(x_{2}\right)=\sum_{\text {all } x_{1}} P_{X_{1} X_{2}}\left(x_{1}, x_{2}\right)
$$

The marginal mass function for X_{1} that is not equal to zero is

$$
P_{X_{1}}\left(x_{1}\right)=\sum_{\text {all } x_{2}} P_{X_{1} X_{2}}\left(x_{1}, x_{2}\right)
$$

Probability for Two Discrete

Random Variables

■ Properties

If X_{1} and X_{2} are statistically independent (uncorrelated) random variables, then

$$
P_{X_{1} \mid X_{2}}\left(x_{1} \mid x_{2}\right)=P_{X_{1}}\left(x_{1}\right)
$$

and

$$
P_{X_{2} \mid X_{1}}\left(x_{2} \mid x_{1}\right)=P_{X_{2}}\left(x_{2}\right)
$$

The important relationship can be obtained :

$$
P_{X_{1}, X_{2}}\left(x_{1}, x_{2}\right)=P_{X_{1}}\left(x_{1}\right) P_{X_{2}}\left(x_{2}\right)
$$

CHAPTER 6a. MULTIPLE RANDOM VARIABLES

Probability for Two Discrete

Random Variables

- Example: Two Discrete RV's

The time to produce a typical engineering drawing, represented by a random variable X_{1}, and its quality, represented by a random variable X_{2}, are under consideration. Suppose X_{1} can be 70, 80, 90, or 100 hours. The quality of a drawing can be considered to be moderate, good, and excellent, and X_{2} can be considered to be 1, 2, and 3, respectively. Suppose that 100 such drawing are evaluated and the information provided the next table is obtained.

CHAPTER 6a. MULTIPLE RANDOM VARIABLES

Probability for Two Discrete

Random Variables

- Example (cont'd): Two Discrete RV's

X_{2}	70	80	90	100
1	15	8	3	2
2	3	4	6	12
3	5	8	12	22

CHAPTER 6a. MULTIPLE RANDOM VARIABLES

Probability for Two Discrete

Random Variables

- Example (cont'd): Two Discrete RV's

1. Find the joint PMF of X_{1} and X_{2}.
2. Plot the marginal PMF of X_{1} and X_{2}.
3. If only excellent quality drawings are acceptable (i.e., $X_{2}=3$), plot the conditional PMF of X_{2}.

Probability for Two Discrete

Random Variables

Example (cont'd): Two Discrete RV's

1. The joint PMF $P_{X_{1}, X_{2}}\left(x_{1}, x_{2}\right)$ of X_{1} and X_{2}.

X_{2}	70	80	90	100
1	0.15	0.08	0.03	0.02
2	0.03	0.04	0.06	0.12
3	0.05	0.08	0.12	0.22

CHAPTER 6a. MULTIPLE RANDOM VARIABLES

Probability for Two Discrete

Random Variables

- Example (cont'd): Two Discrete RV's 2. The marginal PMF of $X_{1} P_{x_{1}}\left(x_{1}\right)=\sum_{\text {all } x_{2}} P_{x_{1} x_{2}}\left(x_{1}, x_{2}\right)$

X_{2}	70	80	90	100
1	0.15	0.08	0.03	0.02
2	0.03	0.04	0.06	0.12
3	0.05	0.08	0.12	0.22

$$
\begin{aligned}
& P_{X_{1}}(70)=0.15+0.03+0.05=0.23 \\
& X_{X_{1}}(80)=0.08+0.04+0.08=0.20 \\
& P_{X_{1}}(90)=0.03+0.06+0.12=0.21 \\
& P_{X_{1}}(100)=0.02+0.12+0.22=0.36
\end{aligned}
$$

Probability for Two Discrete

Random Variables

- Example (cont'd): Two Discrete RV's

Marginal PMF of X1 $P_{X_{1}}\left(x_{1}\right)=\sum_{\text {all } x_{2}} P_{X_{1} X_{2}}\left(x_{1}, x_{2}\right)$

CHAPTER 6a. MULTIPLE RANDOM VARIABLES

Probability for Two Discrete

Random Variables

■ Example (cont'd): Two Discrete RV's
The marginal PMF of $X_{2} \quad P_{X_{2}}\left(x_{2}\right)=\sum_{\text {aill } x_{1}} P_{X_{X} X_{2}}\left(x_{1}, x_{2}\right)$

X_{1}	70	80	90	100
1	0.15	0.08	0.03	0.02
2	0.03	0.04	0.06	0.12
3	0.05	0.08	0.12	0.22

$P_{X_{2}}(1)=0.15+0.08++0.03+0.02=0.28$
$P_{X_{2}}(2)=0.03+0.04+0.06+0.12=0.25$
$P_{X_{2}}(3)=0.05+0.08+0.12+0.22=0.47$

Probability for Two Discrete

Random Variables

- Example (cont'd): Two Discrete RV's

Marginal PMF of X_{2}
$P_{X_{2}}\left(x_{2}\right)=\sum_{\text {all } x_{1}} P_{X_{1} X_{2}}\left(x_{1}, x_{2}\right)$

CHAPTER 6a. MULTIPLE RANDOM VARIABLES

Probability for Two Discrete

Random Variables

- Example (cont'd): Two Discrete RV's

3. Conditional Probability of $X_{1} P_{x, x_{2}}\left(x_{1} \mid x_{2}\right)=\frac{P_{x, x_{2}}\left(x_{1}, x_{2}\right)}{P_{x_{2}}\left(x_{2}\right)}$

$$
\begin{array}{|c|c|c|c|c|}
\hline X_{1} & 70 & 80 & 90 & 100 \\
\hline X_{2} & & 9.15 & 0.08 & 0.03 \\
\hline 1 & 0.02 \\
\hline 2 & 0.03 & 0.04 & 0.06 & 0.12 \\
\hline 3 & 0.05 & 0.08 & 0.12 & 0.22 \\
\hline
\end{array} \quad \begin{aligned}
& P_{X_{1} \mid X_{2}}\left(x_{1_{i}} \mid 3\right)=\frac{P_{X_{1} X_{2}}\left(x_{1_{i}}, 3\right)}{P_{X_{2}}(3)} \\
& P_{X_{1} \mid X_{2}}(70 \mid 3)=\frac{0.05}{0.47}=0.11 \\
& P_{X_{1} \mid X_{2}}(80 \mid 3)=\frac{0.08}{0.47}=0.17 \\
& P_{X_{1} \mid X_{2}}(90 \mid 3)=\frac{0.12}{0.47}=0.25 \\
& P_{X_{1} \mid X_{2}}(100 \mid 3)=\frac{0.22}{0.47}=0.47
\end{aligned}
$$

Probability for Two Discrete

Random Variables

- Example (cont'd): Two Discrete RV's

Conditional PMF of $X \mid Y=3$
$P_{X_{1} \mid X_{2}}\left(x_{1_{i}} \mid 3\right)=\frac{P_{X_{1} X_{2}}\left(x_{1^{\prime}}, 3\right)}{P_{X_{2}}(3)}$

CHAPTER 6a. MULTIPLE RANDOM VARIABLES

Probability for Continuous

Random Vectors

- Joint Probability Density Function (JPDF)

The joint probability density function for a continuous multiple random variable or random vector $\boldsymbol{X}=\left(X_{1}, X_{2}, . ., X_{n}\right)$ is used to define

$$
\mathrm{P}\left(x^{l} \leq X \leq x^{u}\right)=\int_{x_{1}^{l}}^{x_{1}^{\prime}+1} \int_{x_{2}^{\prime}}^{x_{2}^{u}} \ldots \int_{x_{n}^{l}}^{x_{n}^{u}} f_{X}(x) d x_{1} d x_{2} \ldots d x_{n}
$$

Note that

$$
\mathrm{P}(-\infty<X<+\infty)=\int_{-\infty-\infty}^{+\infty+\infty} \int_{-\infty}^{+\infty} \int_{-\infty}(x) d x_{1} d x_{2} \ldots d x_{n}=1
$$

Probability for Continuous

Random Vectors

Joint Cumulative Distribution Function (JCDF)

The joint cumulative distribution function of a continuous random variable is defined by

$$
F_{X}(x)=\mathrm{P}(X \leq x)=\int_{-\infty-\infty}^{x_{1}} \int_{-\infty}^{x_{2}} \ldots \int_{-\infty}^{x_{n}} f_{X}(x) d x_{1} d x_{2} \ldots d x_{n}
$$

CHAPTER 6a. MULTIPLE RANDOM VARIABLES

Probability for Continuous

Random Vectors

- Properties of JCDF

1. $\quad F_{X}($ all $x \rightarrow \infty)=0$
2. $\quad F_{X}\left(x_{1}, x_{2}, \ldots, x_{i} \rightarrow-\infty, \ldots, x_{n}\right)=0$, for any $i=1,2, \ldots, n$
3. $F_{X}\left(x_{1}, x_{2}, \ldots, x_{i} \rightarrow-\infty, \ldots, x_{k} \rightarrow-\infty, \ldots, x_{n}\right)=0$, for any values of x_{i}, \ldots, x_{k}
4. $\quad F_{X}\left(x_{1}, x_{2}, \ldots, x_{i} \rightarrow+\infty, \ldots, x_{n}\right)=F_{X j}\left(x_{j}: j=1,2, \ldots, n\right.$ and $\left.j \neq i\right)$, called the marginal distribution of all the random variables except X_{i}
5. $\quad F_{X}\left(x_{1}, x_{2}, \ldots, x_{i} \rightarrow+\infty, \ldots, x_{k} \rightarrow+\infty, \ldots, x_{n}\right)=F_{X j}\left(x_{j}: j=1,2, \ldots\right.$, n and $j \neq i$ to k), called the marginal distribution of all the random variables except X_{i} to X_{k}
6. $\quad F_{X}($ all $x \rightarrow+\infty)=1$
7. $F_{X}(x)$ is a nonnegative and nondecreasing function of x

CHAPTER 6a. MULTIPLE RANDOM VARIABLES

Probability for Continuous

Random Vectors

- The joint density function can be obtained from the a given joint cumulative distribution function as follows:

$$
f_{X}(x)=\frac{\partial^{n} F_{X}(x)}{\partial X}
$$

That is

$$
f_{X_{1} X_{2} \ldots X_{n}}\left(x_{1}, x_{2}, \ldots, x_{3}\right) \frac{\partial^{n} F_{X_{1} X_{2} \ldots X_{n}}\left(x_{1}, x_{2}, \ldots, x_{n}\right)}{\partial X_{1} \partial X_{2} \ldots \partial X_{n}}
$$

Probability for Two Continuous

Random Variables

- For simplicity, the presentation of the materials in the remaining part of this section is limited to two random variables.
- The presented concepts can be generalized to n random variables

Probability for Two Continuous

Random Variables

Conditional Probability Density Function

The conditional probability density function for two random variables X_{1} and X_{2} is given by
$f_{X_{1} \mid X_{2}}\left(x_{1} \mid x_{2}\right)=\frac{f_{x_{1}, x_{2}}\left(x_{1}, x_{2}\right)}{f_{X_{2}}\left(x_{2}\right)}$
where $f_{x_{1}, x_{2}}\left(x_{1}, x_{2}\right)=$ joint density function of X_{1} and X_{2}.
$f_{X_{2}}\left(x_{2}\right)=$ marginal density function for X_{2} that is not equal to zero.

CHAPTER 6a. MULTIPLE RANDOM VARIABLES

Probability for Two Continuous

Random Variables

- Conditional Probability Density Function

The conditional probability density function for two random variables X_{1} and X_{2} is given by
$f_{X_{2} \mid X_{1}}\left(x_{2} \mid x_{1}\right)=\frac{f_{x_{1}, x_{2}}\left(x_{1}, x_{2}\right)}{f_{X_{1}}\left(x_{1}\right)}$
where $f_{x_{1}, x_{2}}\left(x_{1}, x_{2}\right)=$ joint density function of X_{1} and X_{2}.
$f_{X_{1}}\left(x_{1}\right)=$ marginal density function for X_{1} that is not equal to zero.

Probability for Two Continuous

Random Variables

- Marginal Distributions

The marginal density function for X_{2} that is not equal to zero is

$$
f_{X_{2}}\left(x_{2}\right)=\int_{-\infty}^{+\infty} f_{X_{1} X_{2}}\left(x_{1}, x_{2}\right) d x_{1}
$$

The marginal mass function for X_{1} that is not equal to zero is

$$
f_{X_{1}}\left(x_{1}\right)=\int_{-\infty}^{+\infty} f_{X_{1} X_{2}}\left(x_{1}, x_{2}\right) d x_{2}
$$

CHAPTER 6a. MULTIPLE RANDOM VARIABLES

Probability for Two Continuous

Random Variables

- Properties

If X_{1} and X_{2} are statistically independent (uncorrelated) random variables, then

$$
f_{X_{1} \mid X_{2}}\left(x_{1} \mid x_{2}\right)=f_{X_{1}}\left(x_{1}\right)
$$

and
$f_{X_{2} \mid X_{1}}\left(x_{2} \mid x_{1}\right)=f_{X_{2}}\left(x_{2}\right)$
The important relationship can be obtained :

$$
f_{X_{1} X_{2}}\left(x_{1}, x_{2}\right)=f_{X_{1}}\left(x_{1}\right) f_{X_{2}}\left(x_{2}\right)
$$

Probability for Two Continuous
 Random Variables

- Example: Two Continuous RV's

The joint density functions of two random variables X and Y can be expressed as

$$
f_{X, Y}(x, y)= \begin{cases}c\left(x^{2}-4\right)\left(y^{2}-9\right) & \text { for } 0 \leq x \leq 2 \text { and } 0 \leq y \leq 3 \\ 0 & \text { elsewhere }\end{cases}
$$

(a) Determine the constant c.
(b) Determine the marginal density function for X.
(c) Determine the marginal density function for Y.
(d) Are X and Y statistically independent?
(e) Determine the probability of the following event:
$F_{X, Y}(1,3)$

CHAPTER 6a. MULTIPLE RANDOM VARIABLES

Probability for Two Continuous

Random Variables

Example (cont'd): Two Continuous RV's
(a) $\int_{0}^{3} \int_{0}^{2} c\left(x^{2}-4\right)\left(y^{2}-9\right) d x d y=1$
or

$$
\int_{0}^{3} c\left(y^{2}-9\right)\left[\frac{x^{3}}{3}-4 x\right]_{0}^{2} d y=\int_{0}^{3}-\frac{16}{3} c\left(y^{2}-9\right) d y=1.0
$$

or

$$
-\frac{16}{3} c\left[\frac{y^{3}}{3}-9 y\right]_{0}^{3}=1.0
$$

or

$$
c=\frac{1}{96}
$$

■ Example (cont'd): Two Continuous RV's
(a)

$$
\int_{0}^{3} \int_{0}^{2} c\left(x^{2}-4\right)\left(y^{2}-9\right) d x d y=1
$$

or

$$
\int_{0}^{3} c\left(y^{2}-9\right)\left[\frac{x^{3}}{3}-4 x\right]_{0}^{2} d y=\int_{0}^{3}-\frac{16}{3} c\left(y^{2}-9\right) d y=1.0
$$

or

$$
-\frac{16}{3} c\left[\frac{y^{3}}{3}-9 y\right]_{0}^{3}=1.0
$$

or

$$
c=\frac{1}{96}
$$

Probability for Two Continuous

Random Variables

- Example (cont'd): Two Continuous RV's
(b) $f_{X}(x)=\int_{0}^{3} \frac{1}{96}\left(x^{2}-4\right)\left(y^{2}-9\right) d y=-\frac{3}{16}\left(x^{2}-4\right)$
(c) $f_{Y}(y)=\int_{0}^{2} \frac{1}{96}\left(x^{2}-4\right)\left(y^{2}-9\right) d x=-\frac{1}{18}\left(y^{2}-9\right)$
(d) $f_{X}(x) f_{Y}(y)=\left[-\frac{3}{16}\left(x^{2}-4\right)\right]\left[-\frac{1}{18}\left(y^{2}-9\right)\right]$

$$
=\frac{1}{96}\left(x^{2}-4\right)\left(y^{2}-9\right)=f_{X}(x) f_{Y}(y)
$$

$\therefore X$ and Y are statistically independent random variables.

Probability for Two Continuous Random Variables

- Example (cont'd): Two Continuous RV's (e)

$$
F_{X, Y}(1,3)=\frac{1}{96} \int_{0}^{1}\left(x^{2}-4\right) d x \int_{0}^{3}\left(y^{2}-9\right) d y=0.6875
$$

