

1. In the method of sections, generally a "cut" passes through no more than \qquad members in which the forces are unknown.
A) 1
B) 2
C) 3
D) 4
2. If a simple truss member carries a tensile force of T along its length, then the internal force in the member is \qquad .
A) tensile with magnitude of $T / 2$
B) compressive with magnitude of $T / 2$
C) compressive with magnitude of T
D) tensile with magnitude of T

The Method of Sections

In the method of sections, a truss is divided into two parts by taking an imaginary "cut" (shown here as $a-a$) through the truss.

Since truss members are subjected to only tensile or compressive forces along their length, the internal forces at the cut member will also be either tensile or compressive with the same magnitude. This result is based on the equilibrium principle and Newton's third law.

Steps for Analysis

1. Decide how you need to "cut" the truss. This is based on:
a) where you need to determine forces, and, b) where the total number of unknowns does not exceed three (in general).
2. Decide which side of the cut truss will be easier to work with (minimize the number of reactions you have to find).
3. If required, determine the necessary support reactions by drawing the FBD of the entire truss and applying the EofE.

4. Draw the FBD of the selected part of the cut truss. We need to indicate the unknown forces at the cut members. Initially we assume all the members are in tension, as we did when using the method of joints. Upon solving, if the answer is positive, the member is in tension as per our assumption. If the answer is negative, the member must be in compression. (Please note that you can also assume forces to be either tension or compression by inspection as was done in the figures above.)

Steps for Analysis (cont’d)

5. Apply the equations of equilibrium (EofE) to the selected cut section of the truss to solve for the unknown member forces. Please note that in most cases it is possible to write one equation to solve for one unknown directly.

Example 1

Given: Loads as shown on the roof truss.

Find: The force in members $D E, D L$, and $M L$.

Plan:

a) Take a cut through the members $D E, D L$, and $M L$.
b) Work with the left part of the cut section. Why?
c) Determine the support reaction at A. What are they?
d) Apply the EofE to find the forces in $D E, D L$, and $M L$.

Analyzing the entire truss, we get $\sum F_{x}=A_{x}=0$. By symmetry, the vertical support reactions are

$$
\begin{aligned}
& A_{y}=I_{Y}=36 \mathrm{kN} \\
& \left(+\sum M_{D}=-36(8)+6(8)+12(4)+F_{M L}(5)=0\right.
\end{aligned}
$$

$$
\underline{F}_{\underline{M L}}=38.4 \mathrm{kN}(\mathrm{~T})
$$

Slide No. 11

Concept Quiz

1. Can you determine the force in member $E D$ by making the cut at section $a-a$? Explain your answer.
A) No, there are 4 unknowns.
B) Yes, using $\Sigma M_{D}=0$.
C) Yes, using $\Sigma M_{E}=0$.
D) Yes, using $\Sigma M_{B}=0$.

Concept Quiz (cont’d)

2. If you know $F_{E D}$, how will you determine $F_{E B}$?
A) By taking section $b-b$ and using $\Sigma M_{E}=0$
B) By taking section $b-b$, and using $\Sigma F_{x}=0$ and $\Sigma F_{y}=0$
C) By taking section $a-a$ and
 using $\Sigma M_{B}=0$
D) By taking section $a-a$ and using $\Sigma M_{D}=0$

Example 2

Given: Loading on the truss as shown.

Find: The force in members $B C$, $B E$, and $E F$.

Plan:

a) Take a cut through the members $B C, B E$, and $E F$.
b) Analyze the top section (no support reactions!).
c) Draw the FBD of the top section.
d) Apply the equations of equilibrium such that every equation yields answer to one unknown.

UMBC Chapter 6b. STRUCTURAL ANALYSIS

Attention Quiz

1. As shown, a cut is made through members $G H, B G$ and $B C$ to determine the forces in them. Which section will you choose for analysis and why?
A) Right, fewer calculations.
B) Left, fewer calculations.
C) Either right or left, same
 amount of work.
D) None of the above, too many unknowns.

