

PMBC Chapter 4c. FORCE SYSTEM RESULTANTS \quad Slide No. 1

MOMENT OF A COUPLE

Lecture's Objectives:

Students will be able to
a) define a couple, and,

In-Class activities:
b) determine the moment of a couple.

- Reading quiz
- Applications
- Moment of a Couple
- Concept quiz
- Group problem (Ex. 3 \& 4)
- Attention quiz

Reading Quiz

1. In statics, a couple is defined as \qquad separated by a perpendicular distance.
A) two forces in the same direction.
B) two forces of equal magnitude.
C) two forces of equal magnitude acting in the same direction.
D) two forces of equal magnitude acting in opposite directions.
2. The moment of a couple is called a \qquad vector.
A) free
B) spin
C) romantic
D) sliding

Applications

A torque or moment of $12 \mathrm{~N} \cdot \mathrm{~m}$ is required to rotate the wheel. Which one of the two grips of the wheel above will require less force to rotate the wheel?

The crossbar lug wrench is being used to loosen a lug net. What is the effect of changing dimensions a, b, or c on the force that must be applied?

Moment of a Couple

A couple is defined as two parallel forces with the same magnitude but opposite in direction separated by a perpendicular distance d.

The moment of a couple is defined as
$M_{O}=F d$ (using a scalar analysis) or as
$\mathbf{M}_{O}=\mathbf{r} \times \mathbf{F}$ (using a vector analysis).
Here \mathbf{r} is any position vector from the line of action of $-\mathbf{F}$ to the line of action of \mathbf{F}.

Given: Two couples act on the beam and d equals 8 ft .

Find: The resultant couple

Plan:

1) Resolve the forces in x and y directions so they can be treated as couples.
2) Determine the net moment due to the two couples.

Example 1 (cont’d)- Scalar Approach

The net moment equals to

$$
\begin{aligned}
+(\Sigma M & =-(48 \mathrm{lb})(4 \mathrm{ft})+(40 \mathrm{lb})\left(\cos 30^{\circ}\right)(8 \mathrm{ft}) \\
& =-192.0+277.1=85.1 \mathrm{ft} \cdot \mathrm{lb}
\end{aligned}
$$

Given: A force couple acting on the rod.

Find: The couple moment acting on the rod in Cartesian vector notation.

Plan:

1) Use $\mathbf{M}=\mathbf{r} \times \mathbf{F}$ to find the couple moment.
2) Set $\mathbf{r}=\mathbf{r}_{A B}$ and $\mathbf{F}=\{14 \mathbf{i}-8 \mathbf{j}-6 \mathbf{k}\} N$.
3) Calculate the cross product to find \mathbf{M}.

Concept Quiz

1. \mathbf{F}_{1} and \mathbf{F}_{2} form a couple. The moment of the couple is given by \qquad .
A) $\mathbf{r}_{1} \times \mathbf{F}_{1}$
B) $\mathbf{r}_{2} \times \mathbf{F}_{1}$
C) $\mathbf{F}_{2} \times \mathbf{r}_{1}$
D) $\mathbf{r}_{2} \times \mathbf{F}_{2}$

2. If three couples act on a body, the overall result is that
A) the net force is not equal to 0 .
B) the net force and net moment are equal to 0 .
C) the net moment equals 0 but the net force is not necessarily equal to 0 .
D) the net force equals 0 but the net moment is not necessarily equal to 0 .

Example 3 - Scalar

Given: Two couples act on the beam. The resultant couple is zero.

Find: The magnitudes of the forces P and F and the distance d.

PLAN:

1) Use definition of a couple to find P and F.
2) Resolve the 300 N force in x and y directions.
3) Determine the net moment.
4) Equate the net moment to zero to find d.

Example 3 (cont'd) - Scalar

From the definition of a couple
$P=500 \mathrm{~N}$ and
$F=300 \mathrm{~N}$.

Resolve the 300 N force into vertical and horizontal components. The vertical component is $\left(300 \cos 30^{\circ}\right) \mathrm{N}$ and the horizontal component is $\left(300 \sin 30^{\circ}\right) \mathrm{N}$.
It was given that the net moment equals zero. So
$+\left(\Sigma M=-(500)(2)+\left(300 \cos 30^{\circ}\right)(d)-\left(300 \sin 30^{\circ}\right)(0.2)=0\right.$
Now solve this equation for d.
$d=\left[1000+300 \sin 30^{\circ}(0.2)\right] /\left(300 \cos 30^{\circ}\right)=3.96 \mathrm{~m}$

Given: $\mathbf{F}=\{25 \mathbf{k}\} \mathrm{N}$ and

$$
-\mathbf{F}=\{-25 \mathbf{k}\} \mathrm{N}
$$

Find: The couple moment acting on the pipe assembly using Cartesian vector notation.

PLAN:

1) Use $\mathbf{M}=\mathbf{r} \times \mathbf{F}$ to find the couple moment.
2) Set $\mathbf{r}=\mathbf{r}_{A B}$ and $\mathbf{F}=\{25 \mathbf{k}\} \mathrm{N}$.
3) Calculate the cross product to find \mathbf{M}.

	$\begin{aligned} \mathbf{r}_{A B} & =\{-350 \mathbf{i}-200 \mathbf{j}\} \mathrm{mm} \\ & =\{-0.35 \mathbf{i}-0.2 \mathbf{j}\} \mathrm{m} \\ \mathbf{F} & =\{25 \mathbf{k}\} \mathbf{N} \end{aligned}$	
$\mathbf{M}=\mathbf{r}_{A B} \times \mathbf{F}$		
$=$	$\begin{array}{ccl}\boldsymbol{i} & \boldsymbol{j} & \boldsymbol{k} \\ -0.35 & -0.2 & 0 \\ 0 & 0 & 25\end{array}$	$\mathrm{N} \cdot \mathrm{~m}$
$=\{\mathbf{i}(-5-0)-\mathbf{j}(-8.75-0)+\mathbf{k}(0)\} \mathbf{N} \cdot \mathrm{m}$		

